Archive for the ‘Sättigungsdaten-Flüssigkeiten und Gase’ Category

Zur Berechnung von Stoffwerten für Flüssigkeiten und Gase in der kritischen Region von Stoffen

Donnerstag, Januar 23rd, 2014

Ganz  allgemein ist ja leider festzustellen, daß alle bisherigen in der chemischen Technik und Verfahrenstechnik angewendeten Zustandsgleichungen, selbst die modernsten, nicht in der Lage sind, die realen pvT- Verhältnisse eines Stoffes mit ausreichender Genauigkeit in der kritischen Region darzustellen. Das bestätigen Aussagen zur Genauigkeit in der kritischen Region z. B. auch in der wichtigen und modernen web- site „nist webbook“, die pvT- Werte oft angewendeter Stoffe der chemischen Industrie mit den aktuell besten empirischen Zustandsgleichungen nach Anpassung an Meßwerte  angibt (s. auch den Artikel „Zur Genauigkeit der Berechnung von pvT- Daten in der kritischen Region“ vom 15.4.2013). Auch die Erwartung, daß sich mit den von der Theoretischen Physik festgestellten Gesetzmäßigkeiten kritischer Phänomene akzeptable Berechnungsgleichungen ohne oder geringe empirische Anteile ergeben könnten, die zwar nicht der klassischen van der Waals- Thermodynamik und den daraus resultierenden Gleichungen bis hin zur sogen.  molekularen Thermodynamik entsprechen, aber doch ausreichenden Genauigkeitsansprüchen genügen, hat sich seit Jahren nicht erfüllt.

Mit nun vorliegenden Untersuchungsergebnissen zum pvT- Verhalten reiner Stoffe in der kritischen Region ist versuchsweise ein Theorie- Ansatz abgeleitet worden, der zu einer Erweiterung von Gesetzmäßigkeiten kritischer Phänomene weit über ihre bisherige Anwendbarkeit  begrenzt auf die nahe Umgebung des kritischen Punktes führt. So ergeben sich z. B.  Berechnungsgleichungen für die kritische Isotherme und benachbarte Isothermen, die die pvT- Verhältnisse in der Nähe des kritischen Punktes eines Stoffes allein nur bei Kenntnis der kritischen Daten pk, vk, Tk bei guter Annäherung an die Realität wiedergeben. Allerdings ist dieser Ansatz außerhalb des bisherigen Main- Streams. Die von manchen theoretischen Physikern vertretene Ansicht, kritische Exponenten seien analog einer Naturkonstanten unabhängig vom Stoff und etwa konstant, bestätigt sich mit diesem Theorie- Ansatz nur teilweise. Der kritische Exponent β bestätigt sich stoffunabhängig mit ca. 1/3, der Exponent δ allerdings erweist sich als stoffabhängig berechenbar mit den kritischen Daten.

Die van der Waals- Thermodynamik und die vielen auf dieser Grundlage abgeleiteten Zustandsgleichungen gelten ja nicht in der kritischen Region. Hier gelten die Gesetzmäßigkeiten kritischer Phänomene, deren Wirksamkeit nachgewiesen und von der Theorie her erklärt ist- aber doch noch nicht soweit entwickelt ist, dass man für technische Zwecke verlässlich damit rechnen könnte. Veröffentlichte Stoffwerte für Zustände in der kritischen Region können deshalb mit erheblichen Fehlern behaftet sein, wie die Autoren von Stoffwertdaten selbst einschätzen. Die Situation der Bestimmung von Zustandsdaten in der Umgebung des kritischen Punktes eines Stoffes ist bereits in verschiedenen Artikeln dieses Blogs näher dargestellt:  „Die Anwendbarkeit kritischer Phänomene zur Berechnung von pvT- Daten“ vom 23.2.2013; „Zur Genauigkeit der Berechnung von pvT-Daten in der kritischen Region“ vom 15.4.2013.  Die in Datensammlungen und in der Literatur beschriebenen Berechnungsgrundlagen beziehen sich auf supergenaue Messungen in der kritischen Region und auf jeweils weitgehende empirische Zustandsgleichungen für technisch wichtige Stoffe. Allgemeingültige Lösungen ausreichender Genauigkeit können nicht genannt werden.

Nun ergab es sich nach den o. gen.  speziellen Untersuchungen des Verhaltens von Stoffen in der kritischen Region, dass eine Hypothese zur näherungsweisen Erweiterung des Gültigkeitsbereichs kritischer Phänomene sowohl  für Zustände um den kritischen Punkt als auch für Zustände weiter entfernt vom kritischen Punkt zu der Realität weitgehend nahekommenden Ergebnissen führt (Angaben zur Theorie und ihre Anwendungen s. z. B. den Artikel „Eine Zustandsgleichung für reale Gase- abgeleitet aus der Theorie kritischer Phänomene“ vom 1.5. 2009).  Nachrechnungen  der pv- Daten kritischer Isothermen gut vermessener Stoffe zeigen das, indem die Berechnungsergebnisse entsprechend der neuen zur Theorie kritischer Phänomene abgeleiteten Möglichkeiten mit Ergebnissen von bisher angewendeten Zustandsgleichungen- dokumentiert in „nist webbook“-  verglichen werden. Zu betonen ist, dass zur Bestimmung der pv-Werte auf der kritischen Isotherme entsprechend der neuen Berechnungsmöglichkeiten nur die Kenntnis der kritischen Daten pk, vk, Tk notwendig ist, während die von renommierten Autoren angewendeten weitgehend empirischen Zustandsgleichungen umfangreiche Messungen und Anpassungen erfordert haben. Beispiele zum Vergleich der Ergebnisse  des neuen Theorie- Ansatzes mit denen nach herkömmlichen weitgehend empirischen Zustandsgleichungen renommierter Autoren auf der Grundlage sehr genauer Messungen und Anpassungen können nach Anforderung (dr.f.tampe@t-online.de) zur Verfügung gestellt werden (für Benzol, Toluol, Ethylen, Kohlenstoffdioxid, Propylen, Helium, Wasserstoff, Methanol…usw.). Auch verwendbare Nachrechnungen für pvT- Daten von Stoffen, zu denen keine Meßwerte außer denen der kritischen Daten in der kritischen Region existieren, sind nun vorstellbar! Das ist durchaus für bisher nicht weiter vermessene  Stoffe bei nur der Kenntnis der kritischen Daten zu erwarten (entsprechende Anfragen ebenfalls an die o.gen. Mail- Adresse bei kostenloser Bearbeitung, falls die Ergebnisse nach Absprache zur Auswertung benutzt werden dürfen).

Sehr interessant ist es auch, dass es mit den neuen Möglichkeiten zur Berechnung von pv- Daten auf Isothermen möglich ist, die Sättigungsdaten v‘, v“ von Flüssigkeiten und Dämpfen entsprechend der Temperatur als Näherungen zu bestimmen. Für die v‘-, v“-Volumina von Stoffen kurz unter der kritischen Temperatur eines Stoffes und weiter entfernt von der kritischen Temperatur können so Berechnungsgleichungen abgeleitet werden. Diese Gleichungen geben die Sättigungsvolumina von Flüssigkeiten und Dämpfen als Temperaturfunktion und als Näherung an. Die Genauigkeit der Flüssigkeitsdaten ist dabei oft recht hoch und entsprechend von Meßwerten erheblich besser als die der Dampfdaten. Anfragen zu solchen Nachrechnungen o. gen. Art sind möglich. Es ist darauf hinzuweisen, daß es bisher keine allgemein gültige Möglichkeit gibt, die Sättigungsvolumina von Stoffen als Näherung  zu berechnen.

Einige interessante Beispiele zur Stoffwertberechnung auf der Grundlage kritischer Phänomene

Dienstag, Mai 7th, 2013

Die Auswertung von Gesetzmäßigkeiten kritischer Phänomene, die von der Theoretischen Physik abweichend von der sonst üblichen van der Waals- Thermodynamik festgestellt sind, ergab eine Zustandsfunktion als Zusammenhang zwischen  Druck p, Volumen v und Temperatur T der Form

image276.

Dabei ist ps der Dampfdruck und v“ das Sättigungsdampfvolumen.

Im Ergebnis der Untersuchungen zu Siededaten von Stoffen, die aus Gesetzmäßigkeiten kritischer Phänomene ableitbar sind,  ergab sich für weitab von der kritischen Temperatur befindliche Temperaturen die grob näherungsweise bestehende Beziehung

image293.

Dabei ist β der kritische Exponent mit dem Betrag 1/3 , Tk ist die kritische Temperatur ,  vk das kritische Volumen und v‘ das Siedevolumen bei einer weit von der kritischen Temperatur entferntenTemperatur.  Die Größe K erweist sich dabei als eine dimensionslose allgemeine Konstante der Größenordnung  grob allgemein von 3.7 (in einem Variationsbereich von 3 bis 4- oft also bei 3.7) (s. Tampe. F. : „Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“- ISBN 978-3-00-027253-0). Es ist also immer möglich, das Flüssigkeitsvolumen v‘ eines Stoffes für weitab von der kritischen Temperatur entfernte Temperaturen einzuschätzen- selbst wenn nichts weiter außer den Daten des kritischen Punktes bekannt ist.  Damit erweist es sich dann letztlich als möglich, nahkritische pvT- Stoffdaten als Näherung zu berechnen (s. die Artikel „Die Anwendbarkeit krit. Phänomene zur Berechnung von pvT- Daten“ vom 23.2.2013, „Mitteilung zu Zustandsgleichungen für reale Gase und Flüssigkeiten- abgeleitet aus der Theorie kritischer Phänomene“ vom 16.11.2012, „Zur Berechnung nahkritischer Stoffdaten von Flüssigkeiten und Gasen“ vom 1.7.2012).

In sehr vielen Fällen sind pvT- Daten von Stoffen in der Umgebung des jeweiligen normalen Siedepunkts  vom Tripelpunkt bis zu höheren Temperaturen bekannt. Es kann aber auch sein, daß nur die kritischen Daten bekannt sind und sonst fast keine Angaben zu wichtigen Stoffwerten (außer denen z. B. zu Feststoffdaten) vorliegen. Leider ist das oft so- wie Beispiele aus Stoffdatenbanken bzw. web- Informationen zeigen.

Es kann also sehr schwierig oder sogar unmöglich werden, Stoffdaten allein durch Rechnung bestimmen  oder einschätzen zu wollen, wenn nur wenige Meßwerte bekannt sind- z. B. in all den Fällen bei allein nur bekannten kritischen Daten. Die Situation ist allerdings verbessert, wenn die nun bekannten Veränderungen durch die festgestellte  Erweiterbarkeit von Gesetzmäßigkeiten kritischer Phänomene auch auf Temperaturen weit ab von der kritischen Temperatur  beachtet werden.

Für all diese Fälle, deren Stoffdaten bei allein nur bekannten kritischen Daten zumindest als grobe Näherung mit Gesetzen kritischer Phänomene  bestimmt werden können, sollen nachfolgend einige interessante Beispiele dargelegt  werden.

Ein seit vielen Jahren wichtiger Stoff bei der Isotopentrennung von Uran 235 und Uran 238 ist Uranhexafluorid UF6, wobei die Trennung in Gaszentrifugen geschieht. Das technische know how dieses Prozesses ist aus verständlichen Gründen keineswegs völlig offen. Auch die Stoffdaten sind in allgemein zugänglichen Datensammlungen der Literatur und Datenbanken des web nur teilweise zugänglich.

Verfügbar sind z. B. die Daten des kritischen Punktes: Tk = 503.35 K (230.2 °C), pk = 4.66 MPa, vk = 256 cm³/mol. Allein mit diesen Angaben (und sonst keinen weiteren) ist es nun möglich, mit den sich aus kritischen Phänomenen ergebenden neuen Berechnungsgleichungen die pvT- Daten der kritischen Region rechnerisch einzuschätzen. Auch die pv-Werte auf Isothermen überkritischer Temperaturen, die sich weiter entfernt von der kritischen Temperatur befinden, können nun so als Näherungen ermittelt werden. Die nachfolgenden Diagramme, die pv- Daten für nahkritische Temperaturen angeben, sind das Ergebnis solcher nun möglicher Rechnungen für Uranhexafluorid.

image294

 

image295

 

image296

Rechnungen für technisch relevante pvT- Daten von UF6 erweisen sich nun als durchaus möglich!

Ein weiteres Beispiel eines wichtigen Stoffes mit nur unvollständigen Angaben in frei verfügbaren Datenbanken ist Ozon O3. Angegeben werden i.a. die kritischen Daten für Temperatur, Druck und Volumen Tk = 261.05 K, pk = 5.46 MPa, vk = 89.38 cm^3/mol. Auch der normale Siedepunkt bei 161.25 K und der Tripelpunkt bei 80.45 K wird genannt.

Allein mit solchen Angaben ist es nun auf der Grundlage der gen. Gesetzmäßigkeiten kritischer Phänomene möglich, pvT- Daten in der kritischen Region und darüber hinaus zu berechnen. Für Ozon z. B. ergeben sich so die folgenden Diagramme für Isothermen in der kritischen Region.

image297

 

Ein anderes interessantes Beispiel zur Erfassung von pvT-Daten in der kritischen Region ist Tritium T2. Das Molekül besteht aus zwei Tritium- Atomen, wobei der Tritiumkern selbst aus zwei Protonen und einem Neutron besteht. Die folgenden Daten werden in internationalen Datenbanken genannt: Tk = 40.55 K, vk = 57.0576. Der normale Siedepunkt wird mit 25.03 K  angegeben.

Für Tritium T2 können als Näherung die folgenden pvT- Daten in der kritischen Region entsprechend folgenden Diagramms  berechnet werden:

image298

 

 

Für viele weitere Stoffe können nun was hier gezeigt werden sollte- bei bekannten kritischen Daten näherungsweise pvT- Angaben für das kritische Gebiet und auch weit darunter bzw. darüber berechnet werden!

Zur Genauigkeit der Berechnung von pvT- Daten in der kritischen Region

Montag, April 15th, 2013

Für technisch wichtige Stoffe existieren heute recht genaue Zustandsgleichungen, die die Variablen Druck p, Temperatur T und Volumen v bzw. die Dichte ρ sowohl im Flüssigkeits- als auch im Gaszustand miteinander verbinden. Da es für die in der verfahrenstechnisch – großtechnischen Praxis bestehenden Anforderungen auf eine hohe Genauigkeit ankommt, reichen Berechnungsgleichungen auf Modellvorstellungen der Theoretischen Physik (auf der Basis der van der Waals- Gleichung und ihren vielen sogen. halbempirischen Weiterentwicklungen, der Virialgleichung usw. bis hin zur sogen. molekularen Thermodynamik) nicht aus. Deshalb müssen immer noch Zustandsgleichungen mit ausgeprägt empirischen und stoffspezifischen Anteilen verwendet werden, um die erforderliche Genauigkeit zu ermöglichen. Der Aufwand ist hoch. Er setzt sehr genaue und umfangreiche pvT- Messungen des jeweiligen Stoffes voraus, um die erforderlichen Anpassungen der experimentell ermittelten Zustandsdaten an Parameter vorausgesetzter Zustandsgleichungen zu ermöglichen. Die Erfolge dieser Vorgehensweise mit weitgehend empirischen und „halbempirischen“  Zustandsgleichungen sind offensichtlich.

Selbst für den die menschliche Existenz begründenden Stoff „Wasser“ sind solch weitgehend empirische Zusammenhänge auf der Grundlage sehr genauer pvT- Messungen entwickelt worden (entsprechend der sogen. IAPWS formulation- „International Association for the Properties of Water and Steam“), keineswegs aber auf der alleinigen Grundlage eines nur physikalisch begründeten Modells. Auch für die wichtigen Stoffe der Erdöl- und Erdgasgewinnung und Verarbeitung- wie z.B. Methan, Ethan……bis Benzol, Toluol usw.- existieren Zustandsgleichungen dieser Art.

Meßwerte vieler Substanzen sind heute in Datenbanken dokumentiert, die einen schnellen Zugriff (allerdings oft gebührenpflichtig) über das Internet gestatten (s. z.B. die umfangreiche Stoffdatensammlung „dechema.de/detherm“). Die Bereitstellung von Stoffdaten geht unterdessen so weit, für eine Vielzahl technisch wichtiger Stoffe komplette pvT-Datensätze und auch kalorische Daten anzugeben (s. „nist webbook“), die nach Vorgabe von Druck und Temperatur entsprechend der jeweiligen Dichte bzw. des Volumens mit einer weitgehend an Meßwerte angepaßten Zustandsgleichung ermittelt wurden- und das sowohl für die flüssige Phase und auch für die Gasphase und überkritische Zustände. Die Fehler dabei sind durchaus gering und liegen oft nur im Prozentbereich oder sogar darunter. Sie sind so geeignet für verfahrenstechnische Auslegungen großtechnischer Prozesse mit solchen Stoffen.

Dies alles trifft zu nur für pvT- Zustände weiter entfernt von den kritischen Daten. Soll bei Vorgabe von Druck und Temperatur in einem nahkritischen Bereich die Dichte bzw. das Volumen eines Stoffes mit einer solchen Zustandsgleichung bestimmt werden (dokumentiert z.B. in „nist webbook“) ist das zwar möglich- die Fehler aber werden dann oft als „höher“  im Vergleich zu den Fehlern angegeben, die in Zuständen weiter entfernt von den kritischen Daten festgestellt sind. So heißt es dann z.B. bei nist webbook für Ammoniak: „The uncertainties of the equation of state are o.2% in density….., except in the critical region“.

Und so etwa lauten ähnliche Feststellungen für auch ander Stoffe:

– „Uncertainties will be higher near the critical point“- nist webbook für H2S

– „In the critical region the uncertainties  are higher for all properties, except vapor pressure“- nist webbook für SO2.

Die Liste von Stoffen mit der Aussage „except in the critical region“ zu den in der Literatur angegebenen Zustandsgleichungen kann fortgesetzt werden, z. B. mit solchen grundlegenden und strukturell einfachen Stoffen wie Pentan, Propylen, Methan u.a. So ist also die Feststellung gerechtfertigt, dass die Ungenauigkeiten bisheriger veröffentlichter Zustandsgleichungen speziell in der kritischen Region selbst nach den durchgeführten sehr genauen pvT-Messungen und Anpassungen immer noch recht hoch sind.  Der Aufwand ist hoch in Relation zum Ergebnis.

Die Hoffnung, dass sich mit den von der Theoretischen Physik festgestellten Gesetzmäßigkeiten kritischer Phänomene akzeptable Berechnungsgleichungen ohne empirische Anteile ergeben könnten, die zwar nicht der klassischen van der Waals- Thermodynamik und den daraus resultierenden Gleichungen bis hin zur sogen. molekularen Thermodynamik entsprechen, aber doch ausreichenden Genauigkeitsansprüchen genügen, hat sich seit Jahren nicht erfüllt.

Nun hat es sich aus theoretischen Erwägungen zur Physik kritischer Phänomene ergeben, einen anderen als bisherige Ansätze zur Auswertung dieser Phänomene zu verfolgen.

Das bisherige Theorie- Ergebnis ist, dass man bei Kenntnis nur der kritischen Daten eines Stoffes weitgehend zutreffende Näherungsaussagen zum pvT- Verlauf der kritischen Isotherme bzw. von nahkritischen Isothermen erhalten kann- ohne zusätzliche Meßwerte. Für Stoffe also, zu denen keine weiteren Messungen außer denen der kritischen Daten vorliegen, können dann zumindest Näherungen des Isothermen -Verlaufs in der kritischen Region abgeleitet werden. Da das für sehr, sehr viele Stoffe zutrifft, ist es also durchaus möglich, die Daten der kritischen Isotherme und auch pv-Daten etwas unterhalb und oberhalb der kritischen Temperatur als Näherung zu berechnen. Nähere Ausführungen zur Theorie und zu Beispielrechnungen sind im Artikel vom 1.7.12 in www.dr-tampe.de u.a. enthalten. 

Bisher war es nicht möglich, die Sättigungsvolumina der siedenden Flüssigkeit und des Sattdampfes für Temperaturen kurz unter der kritischen Temperatur vorauszuberechnen. Mit den neuen Theorie- Ergebnissen zu kritischen Phänomenen erweist sich das unterdessen als möglich. Die berechneten Volumina sind Näherungen, die durchaus weitgehend mit Meßwerten übereinstimmen (s. Artikel“ Die Berechnung von Daten für Zustände kurz unter der kritischen Temperatur“ in www.dr-tampe.de .)

Die Anwendbarkeit kritischer Phänomene zur Berechnung von pvT- Daten

Samstag, Februar 23rd, 2013

Die für Stoffeigenschaften maßgeblichen Wechselwirkungen zwischen den Molekülen und Atomen eines Stoffes haben eine Reichweite von nur einigen Molekül- bzw. Atomdurchmessern. Im kritischen Zustand und in seiner Nähe entsteht allerdings ein universelles Verhalten physikalischer Größen wegen des Eintretens  sogen. „kritischer Fluktuationen“, die sich wie eine beträchtliche Vergrößerung der sogen. Korrelationslänge auswirken. Es entstehen kritische Phänomene. Dies hat zur Folge, daß Eigenschaften völlig unterschiedlicher Stoffe sich im nahkritischen Zustand nach analog gleichen Gesetzmäßigkeiten verhalten, so als ob individuelle Stoffeigenschaften verschwinden.

Kritische Phänomene  sind z. B. erklärt für

– den Dichtesprung zwischen flüssiger und dampfförmiger Phase

– die Differenz vom Druck zum kritischen Druck bzw. von der Dichte zur kritischen Dichte auf der kritischen Isotherme

– Kompressibilitäten

-Wärmekapazitäten

– magnetische Zustände (Suszepilitäten) bei verschwindendem Feld.

Die Aussagen der klassischen Theorien treffen für nahkritische Zustände realer Gase und Flüssigkeiten nicht zu.

Die heutigen thermischen Zustandsgleichungen als Grundlage der Berechnung von Stoffdaten für Flüssigkeiten und Gasen  beruhen alle letzlich auf der physikalisch begründeten van der Waals- Gleichung , der Virialgleichung, auf Ansätzen der Statistischen Thermodynamik und vor allem immer wieder auf Parameter – Anpassungen empirischer Berechnungsgleichungen an Meßwerte. Der Aufwand ist hoch. Die empirische Vielfalt ist kaum noch überschaubar. Sie ist mit hohem Aufwand zur Bestimmung der Meßwerte verbunden. Die unter Physikern manchmal ironisch geäußerte Kritik, daß die sogen. „halbempirischen Zustandsgleichungen“ und andere rein empirische Gleichungen (z. B. die für nahkritische Zustände ) ja höchstens ein empirisch erforderliches Niveau von wenigstens nur zur Hälfte oder weniger erfüllen, charakterisiert die Situation.

Die Theoretische Physik muß trotz der unzweifelbaren verfahrenstechnischen Empirie- Erfolge der letzten Jahrzehnte Richtschnur im Labyrinth der Möglichkeiten bleiben. Die Suche nach physikalisch begründeten neuen Ansätzen mit geringen empirischen Anteilen sollte gerade auf dem Gebiet der Berechnung von Druck p, Volumen v, Temperatur T- Daten aktuell sein und bleiben.

Die Theoretische Physik formuliert eine sogenannte Universilatitätshypothese: „Die kritischen Exponenten sind fast universell, d. h. für alle thermodynamischen Systeme gleich.“ (s. Nolting: Grundkurs Theoretische  Physik, Statistische Physik, Springer Verlag 2004), (R.B. Griffiths: Phys. Rev.Lett.24, 1949 (1970)).  Diese Hypothese wird unterdessen als bewiesen betrachtet (Renormierungsgruppentheorie von K. Wilson).

Entsprechend der Universalitätshypothese haben also z. B. die kritischen Exponenten β und δ der kritischen Phänomene  – Dichtesprung und Druck- bzw. Dichtedifferenz auf der kritischen Isotherme für völlig verschiedene Stoffe die jeweils fast gleichen Werte. Diese sehr erstaunliche Eigenschaft wird als Folge einer beträchtlichen Vergrößerung der Korrelationslänge von Teilchenwechselwirkungen in der Nähe des kritischen Punktes erklärt.

Im Ergebnis der für den Dichtesprung und die kritische Isotherme durchgeführten Untersuchungen erweist es sich als möglich, wesentliche Schlußfolgerungen zum Verhalten realer Gase und Flüssigkeiten in der Umgebung des kritischen Punktes und auch für Zustände weit unter der kritischen Temperatur abzuleiten.

Und hier ist das theoretische Problem.

Die Gesetzmäßigkeiten kritischer Phänomene sind nur erklärt in einem engem Intervall von Zustandsdaten um den kritischen Punkt.  Die Erweiterung des Gültigkeitsbereichs von Gesetzmäßigkeiten kritischer Phänomene weiter entfernt vom kritischen Punkt, also nicht nur für Zustände in unmittelbarer Nähe des kritischen Punktes, dürfte deshalb unmöglich sein. Aber das ist nicht der Fall. Denn es zeigt sich bei der Auswertung von Meßdaten an den verschiedensten Stoffen, daß es möglich ist, Gesetzmäßigkeiten kritischer Phänomene zur Bestimmung von Zustandsdaten auch weit entfernt von der kritischen Temperatur und vom kritischen Druck anzuwenden. Die Ergebnisse stimmen dann durchaus mit Meßwerten überein.

In Auswertung solcher Ergebnisse der Untersuchung von Stoffwerten wurde als Hypothese die Erweiterbarkeit der Gesetzmäßigkeiten kritischer Phänomene auf Zustände weiter entfernt vom kritischen Punkt vorausgesetzt. Durch die vorliegenden Ergebnisse mit Untersuchungen an konkreten Stoffdaten ist diese Hypothese als berechtigt dargestellt.

Die physikalische Begründung allerdings fehlt.  

Das Anliegen dieser Schrift ist es, theoretische Physiker und Theoretiker der physikalischen Chemie und auch theoretische Kenntnisse besitzende Verfahrenstechniker zu veranlassen, die Gründe der Erweiterbarkeit von Gesetzmäßigkeiten kritischer Phänomene weit über nahkritische Verhältnisse hinaus zu suchen und zu benennen.

Ergebnisse bisheriger Untersuchungen auf der Grundlage der o.gen. Hypothese sind die folgenden.

Für reale Gase niedriger bis hoher Drücke ergibt sich auf der gen. Grundlage ein funktionaler Zusammenhang zwischen dem Druck p und dem molaren Volumen v auf einer Isotherme der Temperatur T entsprechend der Gleichung

image288  ,                       (I)

wobei ps der Dampfdruck, v“ das molare Sättigungsdampfvolumen und R die allgemeine Gaskonstante ist.

Es zeigt sich weiter, das es mit den auf der Grundlage der Theorie kritischer Phänomene gewonnenen Ergebnisse möglich ist, eine allgemeine Beziehung abzuleiten, die die Berechnung des molaren Volumens v“ trocken gesättigten Dampfes bei bekanntem Dampfdruck ps als grobe Näherung gestattet:

image289.                                  (II)

Dabei sind a und b die Parameter der klassischen van der Waals- Gleichung realer Gase, die nur von den kritischen Daten Tk (kritische Temperatur) und pk (kritischer Druck) abhängen. Die sinnvolle Anwendung dieser Gleichung ist für Zustände näherungsweise von niedrigen bis hohen  Temperaturen gegeben, nicht aber für nahkritische Verhältnisse.

In Auswertung der zu kritischen Phänomenen durchgeführten Untersuchungen ergab sich weiterhin die  Gleichungimage290,                              (III)

die von niedrigen bis zu hohen Temperaturen gilt. Dabei ist der kritische Exponent β mit dem Wert 1/3 vorausgesetzt. Kv ist die sogen. Dichtesprungkonstante, die einfach berechnet werden kann. Die obige Gleichung (III), die dem Dichtesprung zwischen siedender Flüssigkeit des Volumens v‘ und dem Sattdampfvolumen v“ entspricht, ermöglicht die Berechnung des Sättigungsvolumens v‘ der Flüssigkeit bei gegebener Temperatur, wenn v“ bereits mit (II) berechnet werden konnte. Für das Siedevolumen der Flüssigkeit ergibt sich näherungsweise

image291.                               (IV)

Damit sind bei vorgegebener Temperatur und bekanntem Dampfdruck die Sättigungsvolumina v‘ und v“ eines Stoffes näherungsweise berechenbar, wenn die kritischen Daten bekannt sind. 

Für Zustände kurz unter der kritischen Temperatur bestehen wegen der am kritischen Punkt sich beträchtlich vergrößernden Fluktuationen veränderte Bedingungen, die zu anderen sich aus (III) ableitbaren Berechnungsgleichungen führen. Damit sind dann sogar die Sättigungsvolumina v‘ und v“ und auch der Dampfdruck ps für Temperaturen kurz unter der kritischen Temperatur als Näherungen berechenbar.

Speziell für Flüssigkeiten in nahkritischen und auch bis weit unterkritischen Zuständen kann eine Zustandsfunktion abgeleitet werden, die die Berechnung des jeweiligen Flüssigkeitsvolumens bei vorgegebenem Druck und vorgegebener Temperatur als Näherung gestattet. Damit ist dann das Flüssigkeitsverhalten eines Stoffes für das gesamte Existenzgebiet vom Dampfdruck sogar bis zu höheren Drücken im 10 MPa- Bereich und teilweise darüber erfaßt- wie Nachrechnungen an gut vermessenen Stoffbeispielen zeigen.

Alle bisherigen Ansätze zu einer allgemeinen Theorie der Flüssigkeiten gehen letztlich vom jeweiligen Molekülaufbau, von den zwischenmolekularen Wechselwirkungen, von molekulartheoretischen Ansätzen der Quantenmechanik und Statistischen Thermodynamik bis hin zur Statistik mit Monte-Carlo- Modellen usw. aus. Die gesuchte Aussage zu einer möglichst allgemeingültigen Erklärung und mathematischen Fassung  der pvT- Eigenschaften von Flüssigkeiten wurde so bisher nicht gefunden.

Für die bei der Auswertung kritischer Phänomene gefundene allgemeine Zustandsfunktion von Flüssigkeiten ist als Ausgangspunkt zur Beschreibung und Erklärung des Verhaltens von Flüssigkeiten nur der kritische Punkt eines Stoffes mit seinen kritischen Phänomenen erklärt, indem die sonst nur in einem engen Bereich um die kritische Temperatur gültigen Gesetze kritischer Phänomene auf Temperaturen weit unterhalb der kritischen Temperatur übertragen werden. Die physikalische Erklärung dazu fehlt! 

 

 

 

Mitteilung zu Zustandsgleichungen für reale Gase und Flüssigkeiten- abgeleitet aus der Theorie kritischer Phänomene

Freitag, November 16th, 2012

Für reale Gase wurde mit Gesetzmäßigkeiten kritischer Phänomene die Funktion

image276                                                                                   (1)

formuliert. Dabei ist p der Druck/MPa, ps der Dampfdruck/MPa, T die absolute Temperatur/K, v das Volumen/cm³/mol, v“ das Sättigungsdampfvolumen cm³/mol und R die allgemeine Gaskonstante 8.314 J/mol K. Die Funktion (1) ergibt sich allein nur mit Kenntnissen über kritische Phänomene ohne Voraussetzung und Anwendung von physikalischen Theorien, die die Anwendung  der van der Waals-Thermodynamik und ihren empirischen Weiterentwicklungen, der physikalisch begründeten Virialgleichung und ihren Weiterentwicklungen oder gar der sogen.  molekularen Thermodynamik und damit auch deren Vorstellungen über den Molekülaufbau des jeweiligen Stoffes  und der molekularen  Wechselwirkungen voraussetzen.  Die Grundlage dieser Funktion ist nicht die bisherige Thermodynamik, sondern allein nur ein thermodynamisches Modell begründet mit kritischen Phänomenen.

Für Gase besteht neben der physikalisch begründeten van der Waals- Gleichung die ebenfalls physikalisch begründete Virial-Gleichung .  Grundlage der Virialgleichung ist die Taylor- Entwicklung des Realgasfaktors  Z=pv/RT  in eine Reihe für die Dichte 1/v→0.  Als Reihenentwicklung wird

Z=1+B/v+C/v²+……                                                                                                           (2)

erhalten. Die Koeffizienten B,C,….werden als 2., 3. usw. Virialkoeffizient bezeichnet. Sie sind nur temperaturabhängig.

Die Berechnung von Zustandsdaten realer Gase gelingt mit der Virialgleichung als Näherung, wenn zumindest der 2. und evtl. 3. Virialkoeffizient bekannt ist.  Man sagt, die Funktion Z= 1+B/v ist als Näherung ausreichend bis zu Gasdichten von  ca. 0.5 ρk, die Funktion Z= 1+B/v+C/v² bis zu Dichten von ca.  o.75 ρk (ρk- kritische Dichte).

Die der o.gen. Funktion (1)  entsprechenden Virialkoeffizienten können berechnet werden. Die Kenntnis des 2. Virialkoeffizienten z. B.  ist aus folgenden Gründen sinnvoll: Der 2. Virialkoeffizient eines Stoffes nämlich steht mit dem Wechselwirkungspotential der zwischenmolekularen Kräfte zweier Moleküle eines Stoffes in Verbindung. Wenn man den 2. Virialkoeffizienten kennt, muß es der Theoretischen Physik möglich sein, Aussagen zu der wichtigen Potentialfunktion  der zwischenmolekularen Kräfte eines Stoffes abzuleiten. Die Statistische Thermodynamik  formuliert für den 2. Virialkoeffizienten

image277 .                                                       (3)

Dabei ist NA die Avogadrosche Konstante, Epot ist das Potential der zwischenmolekularen Kräfte, k ist die Boltzmann- Konstante und r ist der radiale Abstand zweier Moleküle des jeweiligen Stoffes. Wenn also der Virialkoeffizient B(T) bekannt ist, können Aussagen zu dem molekulartheoretischen sehr grundlegenden Potentialverlauf  Epot(r) getroffen werden. Und wenn das möglich ist, ist letzlich auch eine Aussage zum Potentialverlauf  zwischenmolekularer Kräfte verschiedener Stoffe möglich, so daß damit dann Gemischeigenschaften erfaßt werden können.  Die hierzu erforderlichen weiteren Untersuchungen können hier allerdings nicht dargelegt werden.

Der zur näheren Bestimmung des Potentials zwischenmolekularer Kräfte  erforderliche 2. Virialkoeffizient, der sich entsprechend (1) und  (2)  ergibt, lautet

image278.                                                                                                                           (4)

Am Beispiel Wasser soll gezeigt werden, daß der nach (4) berechnete 2. Virialkoeffizient durchaus dem nach Meßwerten  entspricht.

image279

Mit Hilfe der o.gen. Taylor- Entwicklung ist ersichtlich, daß für über alle Grenzen wachsendes Volumen

image280                                                                                                         (5)

gilt (s. z.B. J. Gmehling, B. Kolbe: Thermodynamik, VCH, 1992). Damit besteht auf einer Isothermen  die Beziehung

image281

(6).

Das ist aus folgendem Grund interessant: Der Grenzwert auf der linken Gleichungsseite wird experimentell bestimmt, indem bei T=konstant bei vorgegebenem Druck für p gegen O das jeweils zugehörige Volumen gemessen wird. Dies sind dann alles Stoffdaten ohne Bezug zu den Sättigungsdaten v“ und ps. Und trotzdem besteht laut der obigen Gleichung ein Zusammenhang mit dem Sättigungsvolumen v“ und dem Dampfdruck ps! Eine Information  zu v“ und ps ist also in dem o.gen.  bei verschwindenden Druck experimentell bestimmbaren Grenzwert bereits enthalten.

So wie es möglich war,  für reale Gase die Zustandsfunktion (1) entsprechend Gesetzmäßigkeiten kritischer Phänomene abzuleiten, zeigt es sich, daß auch für Flüssigkeiten eine druckexplizite allgemeine  Zustandsfunktion ebenfalls nur auf der Grundlage kritischer Phänomene in der Form p = p(v,T)  als Näherung bestimmt werden kann.  Kenntnisse zum Molekülaufbau und zu Wechselwirkungen innerhalb der Moleküle und zwischen den Molekülen des Materials sind dabei erstaunlicherweise gar nicht erforderlich.  Allerdings sind die kritischen Daten pk, vk, Tk und das Flüssigkeitssättigungsvolumen v‘ als bekannte Parameter vorauszusetzen. Die Ableitung der gen. Zustandsfunktionen für reale Gase und für Flüssigkeiten durch Auswertung von Gesetzmäßigkeiten kritischer Phänomene soll mit einer entsprechenden Veröffentlichung 2013 gezeigt werden.

Zur Berechnung nahkritischer Stoffdaten von Flüssigkeiten und Gasen

Sonntag, Juli 1st, 2012

Aus der physikalischen Theorie kritischer Phänomene kann für reale Gase die Zustandsfunktion

image259                                                    (1)

für Zustände entfernt vom kritischen Punkt bzw. für kleine bis mäßige Drücke abgeleitet werden (p- Druck/ MPa, ps- Dampfdruck/ MPa, T- Temperatur / K, v- molares Volumen / cm³/mol, v“- molares Sattdampfvolumen / cm³/mol ). Die Funktion (1) ist als grobe Näherung anwendbar. Sie ist anwendbar auch für hohe Temperaturen, sogar bis über die kritische Temperatur hinaus. Ihre Anwendbarkeit für Zustände nahe des kritischen Punktes ( einige Kelvin unterhalb und oberhalb der kritischen Temperatur Tk und für Drücke in der Nähe des kritischen Druckes pk ) ist nicht zu erwarten, da hier besondere und andere Bedingungen gelten, die sich aus Gesetzmäßigkeiten kritischer Phänomene im Unterschied zur bisherigen van der Waals- Thermodynamik ergeben.

Auf der kritischen Isotherme können entsprechend der Gesetzmäßigkeiten kritischer Phänomene nahe des kritischen Druckes die Relationen

image260                                                          (2)

 

image261                                                         (3)

 

vorausgesetzt werden. Dabei ist Kp ein Proportionalitätsfaktor und δ der entsprechende kritische Exponent. (2) gilt für p ‹ pk , (3) gilt für p › pk.

Für p,v – Zustände nahe pk, vk ist (2), (3) zwingend mit einem in der Theorie kritischer Phänomene erklärten kritischen Exponenten zu rechnen. Der kritische Exponent δ ist resultierend aus Messungen in der Größenordnung von 4.0 bis 4.8 festgestellt worden (s. z. B. Nolting, W.: Statistische Physik, Springer Verlag 2004).  Es gibt Physiker, die kritische Exponenten im Sinne absoluter Naturkonstanten unabhängig vom Stoff interpretieren und andere, die eine Stoffabhängigkeit in Grenzen zugestehen. Setzt man die weitgehende Stoffunabhängigkeit voraus, verbleibt der Proportionalitätsfaktor Kp  als Unbekannte. Es besteht die Frage, wie ist der Proportionalitätsfaktor Kp zu bestimmen, um Zustände auf der kritischen Isotherme berechnen zu können?

Sinnvoll ist es, die Frage allgemeiner zu stellen. Nämlich: Wie können nahkritische Zustandsdaten mit ausreichender Genauigkeit nicht nur für Zustände auf der kritischen Isotherme, sondern auch für Temperaturen kurz unter- und oberhalb der kritischen Temperatur bestimmt werden?  Bisherige physikalisch begründete als auch die sogen. halbempirischen  Zustandsgleichungen u.a. reichen nicht aus. Auch die von der bisherigen Theoretischen Physik erklärten Ansätze, die die rechnerische Bestimmung des Proportionalitätsfaktors Kp ohne Meßwerte  kaum erlauben, reichen nicht aus. Für technisch wichtige Stoffe ist deshalb die Physikalische Chemie und Verfahrenstechnik auf empirische stoffspezifische Lösungen bei einem hohen meßtechnischen Aufwand angewiesen (vielparametrige empirische Zustandsgleichungen pro Stoff bei Voraussetzung hochgenauer Stoffwerte) ( s. z. B. die Stoffdaten für Erdgaskomponenten, für Kohlenstoffdioxid CO2, für Wasser usw. mit weitgehend empirischen Zustandsgleichungen von Wagner und Span, Universität Bochum, s. E.W. Lemmon u. R. Span: Multiparameter Equations of State for Pur Fluids and Mixtures. Chapter 12, in A.R.H. Goodwin, J.V. Sengers und C.Peters(Ed.): Applied Thermodynamics of Fluids. International Union of Pure and Applied Chemistry, Royal Society of Chemistry, Thomas Graham House,Cambridge, UK 2010)).

Bisherige Feststellungen und Schätzungen kritischer Exponenten für dreidimensionale physikalische Systeme mit einem Ordnungsparameter in der entsprechenden Universalitätsklasse wurden z. B. in Auswerung des Issing – Modells mit dem kritischen Exponenten β = 0.326 + – 0.002 und δ = 4.80+- 0.02 vorausgesetzt (s. z. B. J.V. Senger: Thermodynic Behavior of Fluids near the critical Points, Ann. Rev. Phys.Chem. 1986,37).

Vorliegende Ergebnisse zu Gesetzmäßigkeiten kritischer Phänomene bestätigen zwar die Existenz des kritischen Exponenten β in der Größenordnung von 1/3, nicht aber die Gültigkeit eines allgemeinen Exponenten δ etwa bei 4.8. Das in  der Theoretischen Physik gen. Werteintervall δ = 4.0 bis 4.8 trifft zu und ist nach den vorliegenden Untersuchungen durchaus noch zu klein. 

Die nachfolgenden Feststellungen weisen darauf hin, daß es möglich ist, einen physikalisch begründeten und empiriefreien Ansatz zur Nachrechnung nahkritischer Daten ohne zusätzlichen Meßaufwand zu finden.

Bestimmt man für die kritische Isotherme vergleichsweise für verschiedene Stoffe den Exponenten RTk/pk vk in (1), ist festzustellen: Es gibt Stoffe, deren Exponent RTk/pk vk  in (1) in dem für den kritischen Exponenten δ erklärten Bereich zwischen 4.0 bis 4.8 liegt. Für Wasser z. B. ergibt sich 4.36, für Ammoniak NH3  4.12. Für solche Stoffe ist die weitgehende Gültigkeit der Funktion (1) auch im nahkritischen Bereich zu erwarten. Die kritische Isotherme sollte in diesen Fällen entsprechend (1) mit

image262                            v‹ vk      (4)

image263                            v›vk       (5)

erfaßt werden können.

Ob das tatsächlich so ist, zeigt die Nachrechnung mit Daten gut vermessener Stoffe wie z. B. für Wasser.

Wasser: (Tk= 647.15 K, pk= 22.055 MPa, vk= 55.9503 cm³/mol)

Bei einer Temperatur 648.15 K (375 °C, also 1°C  über der kritischen Temperatur) und einem hypothetischen Dampfdruck von 22.286 MPa ergeben sich mit den o. gen. Funktionen (4), (5) im Vergleich mit aus Meßwerten berechneten Realgasfaktoren die folgenden Werte (außerdem sind die Werte angegeben, die sich mit einer der oft angewendeten Ingenieurgleichungen, der Soave- Redlich- Kwong- Gleichung berechnen lassen).

image264

(Meßwerte L. Haar, J.S. Gallagher, G.S. Kell: NBS/NRC Wasserdampftafeln, Springer 1988)

Ein weiteres für die kritische Isotherme vermessenes und veröffentlichtes Beispiel ist

Schwefelhexafluorid SF6: (Tk= 318.7232 K, pk= 3.755 MPa, vk= 196.576 cm³/mol)

Bei einer Temperatur genau auf der kritischen Isotherme ergeben sich mit den o.gen. Funktionen (4), (5) im Vergleich mit aus Meßwerten berechneten Realgasfaktoren die folgenden Werte:

image265

 Die gen. Beispiele u.a. zeigen die Anwendbarkeit der Funktionen (4), (5) für kritische Verhältnisse.

Für Stoffe allerdings, deren Exponent RTk/ pk vk nicht in das von der physikalischen Theorie erklärte Wertebereich von ca. 4.0 bis 4.8 für kritische Exponenten fällt, bestehen andere Bedingungen. Allerdings ergibt sich auch für solche Stoffe die Möglichkeit, nahkritische Stoffdaten rechnerisch zu bestimmen. Es ist dazu nur die Kenntnis der kritischen Daten und die vorausgesetzte Temperatur ohne weitere Meßwerte erforderlich.

Die so feststellbare Zustandsfunktion p = p(T,v) gestattet dann auch die Berechnung kalorischer Größen- wie auch der wichtigen Freien Enthalpie für nahkritische Zustände.

Die vorliegenden Theorie – Ergebnisse sollen veröffentlicht werden.

Die sich aus der Theorie kritischer Phänomene ergebenden Weiterentwicklungen ermöglichen es, allgemeine Aussagen zum pvT- Verhalten von Flüssigkeiten abzuleiten. Es ergibt sich eine Zustandsfunktion speziell für Flüssigkeitenvon niedrigen Temperaturen bis hin zu Temperaturen nahe der kritischen Temperatur. Damit kann bei vorgegebener Temperatur und vorgegebenem Druck das molare Volumen einer Flüssigkeit als Näherung selbst bis zu hohen Drücken von einigen 10 MPa und höher berechnet werden, wenn nur die kritischen und die Sättigungsdaten des jeweiligen Stoffes bekannt sind. Die Berechnung der Realgasfaktoren von Flüssigkeiten bis zu hohen Drücken ist somit bei guter Übereinstimmung mit Meßwerten möglich.

Für Flüssigkeitszustände bei Temperaturen niedriger bis mäßiger Dampfdrücke, d.h. weiter entfernt vom kritischen Punkt des jeweiligen Stoffes, ist mit den Mitteln der van der Waals- Thermodynamik die Zustandsfunktion

image266                                         (6)

ableitbar (b- Eigenvolumen der Moleküle des Stoffes/ cm³/mol, K-stoffspezifische Konstante mit der Dimension eines Druckes, die sich aus dem Dampfdruck ergibt) (s. Tampe,F.: Stoffwerte von Flüssigkeiten und Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene, 2009, ISBN 978-3-00-027253-0).Auch diese Funktion ermöglicht die Berechnung der Flüssigkeitsvolumina als Näherung für Drücke vom Dampfdruck bis weit darüber hinaus- z.B. für Wasser sogar bis 100 MPa. Mit dieser Funktion (6) und der aus der physikalischen Theorie kritischer Phänomene ableitbaren Zustandsfunktion für Flüssigkeiten nahe kritischer Werte ist die Berechnung von Flüssigkeitsdaten als Näherung  in ihrem gesamten Existenzbereich von niedrigen bis zu hohen Temperaturen, vom Dampfdruck bis zu hohen Drücken möglich.

Die in der Technischen Thermodynamik , Physikalischen Chemie und Verfahrenstechnik bestehenden Ansätze, Stoffeigenschaften mit den Mitteln der bisherigen van der Waals- Thermodynamik, der Statistischen Thermodynamik mit Mitteln von Potential- Ansätzen der Quantenmechanik bzw. der sogen. molekularen Modellierung zu bestimmen, erweisen sich oft als kompliziert und empiriebelastet. Als viel einfacher gestalten sich die aus Gesetzmäßigkeiten kritischer Phänomene ableitbaren Berechnungsgleichungen, die nicht einmal Anpassungsrechnungen an vorausgesetzte empirische Parameter verlangen.

Weitere Beispiele zu Rechenergebnissen im Vergleich zu Meßwerten können die Anwendbarkeit der gewonnenen Theorie – Ergebnisse, die Näherungen der entsprechenden Stoffwerte erlauben, verdeutlichen: s. Anlage.

Oftmals sind Meßwerte des nahkritischen Sättigungszustandes von Stoffen unbekannt. Die Berechnung solcher Daten für Flüssigkeits- und Dampfvolumina bzw. für Dampfdrücke  in der Nähe der kritischen Temperatur ist mit den gegenwärtig verfügbaren Berechnungsgleichungen (van der Waals- Gleichung, sogen. halbempirische Gleichungen nach Soave, Redlich, Kwong und Peng, Robinson u. a., Gleichungen der Statistischen Thermodynamik usw.) in vielen Fällen nicht möglich bzw. zu ungenau.

In Auswertung von Gesetzmäßigkeiten kritischer Phänomene ergibt sich nun die Möglichkeit, nahkritische Sättigungsvolumina bzw. die nahkritischen Dichten von Stoffen für Flüssigkeit und Dampf im Sättigungszustand in Abhängigkeit von der Temperatur zu berechnen. Die Berechnungsgleichungen dafür liegen vor. Die Ergebnisse sind Näherungen, die für den Flüssigkeitszustand sogar besser sind als für den Sattdampf (s. auch Artikel „Die Berechnung von Daten für Zustände kurz unter der kritischen Temperatur“ vom 22.2.2011 in www.dr-tampe.de  )

Auf Folgendes ist hinzuweisen: Wenn die Zustandsfunktion p= p(v,T) eines Stoffes sowohl sowohl für den Flüssigkeits- als auch für den Gaszustand bekannt ist, muß es möglich sein, kalorische Daten dieses Stoffes zu berechnen. Zur Berechnung z.B. der für technische Belange wichtigen Enthalpie gilt

image273.                                             (7)

Da

image274                                                                         (8)

die spezifische Wärmekapazität ist, die gemessen werden kann, und für

image275                                                  (9)

gilt, ist damit die Enthalpie eines Stoffes sowohl für den Flüssigkeitszustand als auch den Gaszustand berechenbar. Dies bedeutet weiter, daß so die Enthalpie eines Stoffes entlang der Dampfdruckkurve sowohl für die Flüssigkeit als auch für den Sattdampf als Näherung berechnet werden kann.

 

Anlage: Berechnungsbeispiele

image268

image269

 

image271

 

image272

Die Berechnung von Flüssigkeitsdaten

Mittwoch, November 2nd, 2011

Speziell für Flüssigkeiten kann physikalisch begründet die Zustandsgleichung

image249

abgeleitet werden. Dabei ist T die absolute Temperatur / K , p der Druck über der Flüssigkeit / MPa, ps der Dampfdruck der Flüssigkeit/ Mpa, v das molare Volumen/ cm³/mol, b das molekulare Eigenvolumen/ cm³/mol und K eine dimensionslose Konstante. Diese Gleichung gilt für Flüssigkeiten entsprechend Temperaturen niedriger Dampfdrücke bis zu Temperaturen höherer Dampfdrücke, nicht aber in der Nähe der kritischen Temperatur.

Das Moleküleigenvolumen b ist als die Summe der einzelnen Volumina, die die Moleküle des Stoffes durch ihre atomare Strucktur im Raum aufspannen, erklärt. Das Eigenvolumen erweist sich über weite Temperaturbereiche (von niedrigen bis zu hohen Temperaturen, nicht aber in der Nähe der kritischen Temperatur) als konstant. Es kann mit Stoffdaten, die für niedrige Dampfdrücke gelten, berechnet werden- z. B. mit den (p,v,T)- Daten des oft bekannten normalen Siedepunkts, ebenso ist auch die obige Größe K festgelegt.  Zu den Einzelheiten der Theorie s. “ Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“ (ISBN 978-3-00-027253-0).

Für etliche technisch wichtige Stoffe sind die sogen. Realgasfaktoren Z  = pv/RT sowohl für die Gas- als auch für die Flüssigphase  entlang einer Isotherme von niedrigen bis zu hohen Drücken erfaßt. Diese Daten sind aus Stoffdatenbanken  oder aus Stoffwertsammlungen (s. z. B. W. Blanke: „Thermophysikalische Stoffgrößen“, Springer Verlag) zu entnehmen. Es handelt sich um versuchstechnisch ermittelte Werte.  Die Nachrechnung dieser Werte mit den heute in physilalischer Chemie und Verfahrenstechnik bekannten Zustandsgleichungen führt oft zu Ergebnissen, die mit den Meßwerten nicht übereinstimmen. Vor allem bei Flüssigkeiten ist das so, da es für Flüssigkeiten bisher keine allgemein anwendbare und physikalisch begründete Zustandsgleichung gab. Die o.gen. Flüssigkeits- Zustandsgleichung ermöglicht es allerdings nun, Flüssigkeitsvolumina bei vorgegenem Druck und gegebener Temperatur bei weitgehender Übereinstimmung mit Meßwerten zu berechnen bzw. die Realgasfaktoren zu bestimmen.

Die Tatsache, daß die bisher auch für Flüssigkeiten angewendeten Zustandsgleichungen von van der Waals und ihre Modifikationen zu oft ungenauen Ergebnissen führen, ist  als Theorie- Tatsache durchaus bekannt, da es eine physikalisch ausgearbeitete Theorie der Flüssigkeiten bisher nicht gibt. Interessant ist deshalb das Ergebnis einer Umfrage zu diesem Thema. Es wurde die Frage gestellt, ob es unterdessen Möglichkeiten zur Berechnung von Flüssigkeits- Realgasfaktoren bis zu hohen Drücken von 50 bis 100 MPa mit geringen Fehlern gegenüber Ergebnissen aus Meßwerten gibt. Es wurde gefragt: Ist  es überwiegend in der Praxis noch so, daß für Flüssigkeiten nur eigens durchgeführte pvT- Messungen zum Ziel führen? Fachlich fundierte Antworten bestätigten, daß es bisher noch keine physikalisch begründeten allgemein gültigen Ergebnisse aus einer Theorie der Flüssigkeiten gibt, die es ermöglichen würde, Realgasfaktoren für Flüssigkeiten vom Dampfdruck bis zu hohen Drücken auf einer Isotherme mit ausreichender Übereinstimmung mit Meßwerten zu berechnen.

Aber es gab auch ganz andere Antworten. Z. B. die, man solle dazu unter „google scholar“ nachsehen. Oder gar keine Stellungnahmen. Oder die: Es gibt Berechnungsmöglichkeiten.

Die o. gen. speziell für Flüssigkeiten bestehende Gleichung wurde mit  einer Vielzahl von Stoffbeispielen immer mit dem Ergebnis weitgehender Übereinstimmung mit Meßwerten überprüft.  Einige Beispiele dazu sind im Artikel “ Erdgas- flüssig “ vom 4.3. 2010 bereits genannt. Vor allem ist auf den Artikel „Die Zustandsdaten von Flüssigkeiten- berechnet von niedrigen bis hohen Drücken“ vom 6.2.2010 in diesem Zusammenhang hinzuweisen.

Die nachfolgenden Diagramme für Realgasfaktoren solch wichtiger Stoffe  wie  Wasser und Kohlenstoffdioxid bei verschiedenen Temperaturen können  die gute Übereinstimmung zwischen Rechnung mit obiger Gleichung und Meßwerten zeigen.

Wasser- flüssig:     

image252

image251

image250

image253

 

Kohlenstoffdioxid CO2- flüssig:

image254

image255

Die gute Übereinstimmung zwischen Rechnung und den Werten aus Versuchsdaten ist für die wichtigen Beispiele Wasser und Kohlenstoffdioxid ersichtlich. Ein weitgehend linearer Verlauf des Realgasfaktors Z in Abhängigkeit vom Druck auf einer Isotherme ist ersichtlich.

Für viele Stoffe, auch technisch wichtige Stoffe, ist die Druckabhängigkeit von Flüssigkeitsdaten noch gar nicht bekannt.  Nur für absolut wichtige Stoffe- wie z. B.  Wasser, Kohlenstoffdioxid, Methan, Ethylen, Propan, Butan, Stickstoff, Ammoniak, Sauerstoff- sind Realgasfaktoren druckabhängig bei verschiedenen Temperaturen als allgemein zugängige Daten (ohne evtl. vorhandene Angaben aus gebührenpflichtigen Datenbanken) auf der Grundlage von Meßwerten erfaßt.  Mit der o. gen. Flüssigkeitszustandsgleichung besteht nun die Möglichkeit, den Verlauf des Realgasfaktors einer Flüssigkeit zumindest als Näherung zu erfassen, wenn allein nur die pvT- Daten des normalen Siedepunkts des Stoffes vorliegen (oder auch nur das molare Volumen bei einer Temperatur niedrigen Dampfdrucks).

Die eingangs gen. Flüssigkeitszustandsgleichung wird gelöst, indem bei vorgegebenem Druck und vorgegebener Temperatur das jeweilige molare Volumen gesucht wird. Bei der überwiegenden Zahl der Lösungen liegt jeweils nur ein Volumenwert vor, so daß als Realgasfaktor immer nur ein Wert Z = pv/RT entsteht. Interessanterweise existieren aber auch p,T- Zustände von Flüssigkeiten, für die sich nach obiger Gleichung nicht nur eine Lösung für das molare Volumen ergibt, sondern sogar zwei! Das bedeutet, daß es in solchen Flüssigkeitszuständen zumindest mathematisch auch zwei Realgasfaktor- Werte gibt. 

An den Beispielen Wasser und Kohlenstoffdioxid soll das näher erläutert werden.

Für Wasser bei 300 °C und einem Druck von 10 MPa ergibt sich rechnerisch ein Realgasfaktor Z1 = 0.049, der mit dem entsprechenden Wert 0.051 auf der Grundlage von Meßwerten gut übereinstimmt. Außerdem ergibt sich aber auch noch ein zweiter Wert Z2 = 0.186. Bei einem Druck von 15 MPa ebenfalls bei 300 °C  ist Z1 = 0.073 und Z2 = 0.32 feststellbar.  Der Wert Z1 stimmt gut mit dem auf der Basis von Meßwerten sich ergebenden Realgasfaktor 0.078 überein. Nur im Bereich der Temperatur von 300 °C und Drücken von ca. 10 bis 15 MPa ist eine zweite Lösung Z2 überhaupt feststellbar. Alle anderen untersuchten Wasser- Zustände von 100 bis 350 °C und Drücken bis 100 MPa haben immer nur eine Z- Lösung, die mit den Werten nach Messungen gut übereinstimmen.

Die Frage ist: Was bedeutet die Lösung Z2, die nur in einem eng begrenzten Druck- und Temperaturbereich erklärt ist?

Auch für Kohlenstoffdioxid sind ähnlich wie bei Wasser in einem eng begrenzten p,T- Bereich zwei Lösungen der angewendeten Flüssigkeitszustandsgleichung feststellbar, so daß für bestimmte p,T- Zustände jeweils zwei Realgasfaktoren genannt werden müssen. Für Kohlenstoffdioxid z. B. bei -40 °C und einem Druck von 2 MPa ist Z1 = 0.04 und Z2 = 0.4 feststellbar. Der Wert Z1 stimmt mit dem mit Meßwerten ermittelten Wert o.o405 gut überein. Bei einer Temperatur von 0 °C und einem Druck von 4 MPa ergibt sich Z1 = 0.0845. Dies stimmt gut dem Wert 0.08305 überein,der sich nach Meßwerten ergibt. Für einen zweiten Wert gilt Z2 = 0.172. Ähnlich wie im Fall Wasser ist die zweite Lösung in einem nur engen Zustandsbereich erklärt (ca. von -40°C bis 0 °C und relativ niedrigen Drücken).

Auch hier ist die Frage zu stellen, was bedeutet die zweite Lösung Z2, die nur in einem engem Druck- und Temperaturbereich erklärt ist?

Es gibt nur zwei Erklärungsmöglichkeiten. Prinzipiell besteht die Möglichkeit, daß die Lösung Z2 ohne eine physikalische Bedeutung allein nur durch die mathematische Strucktur der o.gen. Flüssigkeitszustandsgleichung zu Stande kommt. Sicherlich muß man diesen Fall präferieren. Die andere Möglichkeit würde folgendes bedeuten: Für einen bestimmten vorgegebenen Druck und eine bestimmte  vorgegebene Temperatur einer Flüssigkeit können zwei molare Volumenwerte existieren, so daß in diesem Fall zwei Realgasfaktoren feststellbar sind.  Dies würde allerdings weiter bedeuten, daß in einem engen p,T- Zustandsbereich einer Flüssigkeit zwei Modifikationen des Stoffes mit zwei unterschiedlichen Dichten existieren können – ρ1 = M/v1, ρ2 = M/v2 (M- relative Molmasse g/mol). Sollte solch eine Möglichkeit tatsächlich bestehen? Es ist sehr fraglich.  Andererseits ist die evtl. Existenz  der beiden Flüssigkeitsmodifikationen in einem jeweils nur sehr engen p,T- Bereich erklärt, zu dem in Bezug auf eine zweite Modifikation wegen ihrer Unwahrscheinlichkeit  bisher gar keine Untersuchungen vorliegen können.

Was sollte getan werden?

Experimente z.B. mit Wasser bei ca. 300 °C und Drücken um 10 bis 15 MPa könnten darüber aufklären, ob es eine zweite Flüssigkeitsmodifikation  entsprechend der obigen Flüssigkeits- Zustandsgleichung überhaupt gibt. Der Autor dieses Artikels ist dazu nicht in der Lage. Gibt es fachlich Interessierte, die die Gültigkeit und Aussagekraft der gen. Flüssigkeits- Zustandsgleichung mit den dazu notwendigen Technik- Einrichtungen überprüfen könnten und wollen? Allerdings besteht das Risiko, nur bestätigt zu bekommen, daß es nur die eine Flüssigkeitsmodifikation gibt. Falls allerdings bestätigt werden sollte, daß es in einem engen p,T- Bereich eine zweite Flüssigkeitsmodifikation geben kann, ist der wissenschaftliche Gewinn erheblich.

Die Berechnung von Daten für Zustände kurz unter der kritischen Temperatur

Dienstag, Februar 22nd, 2011

Falls die Aufgabe besteht, die Sättigungsvolumina v‘ und v“ bzw. die Dichten ρ‘ und ρ“ eines Stoffes für Temperaturen kurz unter der kritischen Temperatur Tk  dieses Stoffes rechnerisch zu bestimmen, können sich bei Verwendung bisher üblicher Zustandsgleichungen erhebliche Abweichungen gegenüber Meßwerten ergeben.  

Wenn die kritischen Daten mit dem kritischen Druck und der kritischen Temperatur bekannt sind, wird selbstverständlich eine der üblichen verfahrenstechnischen Zustandsgleichungen angewendet (evtl. die van der Waals- Gleichung, die Soave- Redlich- Kwong- Gleichung, die Peng- Robinson – Gleichung oder andere). Ist auch der Dampfdruck ps bekannt, sind die Sättigungsvolumina entsprechend der jeweiligen Zustandsgleichung mit

 ps = p(v‘,T), ps = p(v“,T)

berechenbar.  Ganz abgesehen davon, daß sich je nach der vorausgesetzten Zustandsgleichung unterschiedliche Ergebnisse herausstellen, ist das Hauptproblem aber folgendes: Die mit herkömmlichen Zustandsgleichungen berechneten Daten für Zustände kurz unter der kritischen Temperatur stimmen oftmals gar nicht mit Meßwerten überein. Die Fehler sind groß.

Für Wasser z. B. (als einer der für die menschliche Existenz wichtigsten Stoffe) sind die sich mit der Soave- Redlich- Kwong – Gleichung berechenbaren Sättigungsvolumina für nahkritische Zustände den Meßwerten in den nachfolgenden beiden Diagrammen gegenübergestellt.  Die großen Differenzen zwischen berechneten Daten und Meßwerten sind ersichtlich. Das etwa ist so nicht nur für Wasser!

image210

image211

Der Rechnung wurde die Soave- Redlich- Kwong- Gleichung, die eine der weltweit meist angewendeten empirischen Zustandsgleichungen ist mit

p = RT/v-b -a/v(v+b)

und

image212

zu Grunde gelegt (dabei ist ω ein empirisch für jeden Stoff festzulegender Faktor).

Bei der Wertung der Situation ist es wichtig, nicht nur die Tatsache von teilweise großen Ungenauigkeiten herkömmlicher Zustandsgleichungen zu berücksichtigen, sondern auch vor allem die Erkenntnis, daß Zustandsgleichungen – basierend auf der klassischen van der Waals-Gleichung und ihren empirischen Weiterentwicklungen- in der unmittelbaren Nähe der kritischen Temperatur prinzipiell gar nicht mehr gültig sein können. Der Grund sind die in der Nähe des kritischen Punktes auftretenden kritischen Phänomene. Die Reichweite der zwischenmolekularen Wechselwirkungen vergrößert sich und divergiert sogar, die molekulare Individualität scheint sich zu verlieren, es gelten für unterschiedliche Stoffe sich etwa angleichende Verhaltensweisen- eben die Gesetzmäßigkeiten kritischer Phänomene. Aber das sind nicht mehr die Bedingungen und Voraussetzungen der klassischen van der Waals- Thermodynamik. Es stellt sich heraus, daß herkömmliche Zustandsgleichungen in der Umgebung des kritischen Punktes prinzipiell nicht anwendbar sind (s. z. B. hierzu F. Schwabl: „Statistische Mechanik“, Spinger- Verlag 2004).

Die aus der physikalischen Theorie kritischer Phänomene abgeleitete Beziehung

image213,

die ohne Verwendung einer herkömmlichen Zustandsgleichung besteht, gilt auch in unmittelbarer Nähe zum kritischen Punkt (s. „Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“- ISBN 978-3-00-027253-0).

Kurz unter der kritischen Temperatur gilt auch etwa

image214

(s. z. B.  Schwabl, „Statistische Mechanik“, Springer Verlag 2004). Damit kann nun sowohl das Flüssigkeitsvolumen v‘ als auch das Dampf- Sättigungsvolumen v“ als grobe Näherung für Zustände kurz unter der kritischen Temperatur berechnet werden. Es ergibt sich für das Flüssigkeitsvolumen v‘ für einige K  kurz unter der kritischen Temperatur die quadratische Gleichung

image215,

die durchaus Meßwerten nahe kommende Werte für das Flüssigkeitsvolumen v‘ und für das Dampfvolumen v“ liefert.

Die oben vorausgesetzte Symmetrie der Differenz des Flüssigkeits- bzw. Dampfvolumens zum kritischen Volumen gilt i. a. jeweils nur einige K  unter der kritischen Temperatur. Für von der kritischen Temperatur weiter entfernte Zustände sind bessere Lösungen erforderlich, die tatsächlich existieren. Programme zur rechnerischen Bestimmung der Sättigungsdaten für Flüssigkeits- und Dampfzustände verschiedenster  Stoffe  sind  auf der Grundlage kritischer Phänomene  abgeleitet. Die  so berechneten Daten erweisen sich als den Meßwerten viel besser entsprechend als Ergebnisse mit herkömmlichen Zustandsgleichungen.

Für einige Stoffe soll das exemplarisch belegt werden.

Für Wasser sind in den beiden nachfolgenden Diagrammen die so berechneten Flüssigkeits- und Dampfvolumina für den Sättigungszustand bei verschiedenen Temperaturen angegeben. 

image216

 

image217

 

Die für Wasser sehr deutlichen positiven Unterschiede der Berechnungsergebnisse, die mit diesen Diagrammen im Vergleich zu den eingangs angegebenen Diagrammen entsprechend der Soave- Redlich- Kwong- Gleichung festzustellen sind, sind erheblich.

Für zwei weitere Beispiele – Ethylen und Kohlenstoffdioxid- seien Ergebnisse der v‘, v“- Nachrechnung im Vergleich mit Meßwerten genannt.

Berechnete nahkritische Flüssigkeits- und Sättigungsdampfdaten für Ethylen sind in den beiden nachfolgenden Diagrammen im Vergleich mit Meßwerten dargestellt:

image220

 

image221

 

Die für Kohlenstoffdioxid CO2 berechneten v‘, v“- Werte sind im Vergleich mit Meßwerten und mit nach der Soave- Redlich-Kwong- Gleichung berechneten Werten in den beiden folgenden Diagrammen dargestellt:

image222

 

image223

Die erheblichen Genauigkeitsunterschiede der Rechnungen auf der Grundlage kritischer Phänomene und der aus der klassischen van der Waals- Thermodynamik entstandenen Redlich- Kwong- Gleichung  vor allem im Flüssigkeitsbereich sind ersichtlich.

Für einige weitere technisch und ökologisch wichtige Stoffe seien die mit Berücksichtigung kritischer Phänomene berechenbaren v‘, v“- Werte angegeben, für die allerdings keine in allgemein zugänglichen Datensammlungen bestehenden (unentgeltlichen) Meßwerte erkennbar waren.

Die Nachrechnungen für Ozon O3 ( Tk = 261.1 K, pk = 5.53 MPa, vk = 89.3818 cm^3/mol) auf der Grundlage kritischer Phänomene   für nahkritische Zustände  ergeben für die Sättigungsvolumina von Flüssigkeit und Dampf  die Diagramme

image224,

 

image225.

 

Auch für Schwefelwasserstoff  H2 S (Tk = 373.15 K, pk = 8.937 MPa, vk = 98.5029 cm^3/mol) als Ausgangsstoff wichtiger Synthesen waren für nahkritische Zustände keine unentgeltlich zugänglichen Meßwerte verfügbar.  Die auf der Grundlage kritischer Phänomene berechneten Daten  sind folgende:

image226

 

Daten für Stickstoffmonooxid NO kurz unter der kritischen Temperatur (Tk = 180.2 K, pk = 6.485 MPa, vk = 57.7038 cm^3/mol) sind bei Berücksichtigung kritischer Phänomene folgende:

image228

 

Zu betonen ist, daß zur Ausführung der Rechnung nicht der jeweilige Dampfdruck, doch aber die Angaben zum kritischen Punkt bekannt sein müssen.

Nachdem die Sättigungsvolumina v‘, v“ für eine Temperatur nahe der kritischen Tempertur berechnet sind, kann nun das Flüssigkeits- und Gasverhalten für nahkritische Temperaturen mit z. B. der für reale Gase aus der Theorie kritischer Phänomene abgeleiteten Gleichung

image229

nachgerechnet werden. Allerdings ist nun auch die Kenntnis des Dampfdrucks erforderlich (zur Dampfdruckberechnung  s. Artikel vom 11.12.2009  „Die Berechnung von Dampfdrücken“ ).

Als ein Beispiel hierzu sei die Nachrechnung der Realgasfaktoren Z = pv/RT für Wasser bei einer Temperatur von 350 °C  (Tk = 374 °C )  und 20 MPa bis zu dem hohen Druck von 100 MPa  genannt. Das nachfolgende Diagramm zeigt das Ergebnis der Nachrechnung.

image230

Die gute Übereinstimmung mit den aus Meßwerten berechneten Realgasfaktoren ist ersichtlich. Wird die Rechnung mit einer der üblichen Zustandsgleichungen ausgeführt, sind die Ergebnisse von den Meßwerten viel weiter entfernt- wie das folgende ebenfalls für Wasser bei 350 °C  geltende Diagramm entsprechend der Soave- Redlich- Kwong- Gleichung zeigt.

image231

Vor allem für Flüssigkeitszustände sind die Ergebnisse mit der Soave-Redlich-Kwong- Gleichung sehr ungünstig.  Für den Gaszustand allerdings stimmen Realgasfaktor-Ergebnisse aus der herkömmlichen Soave- Redlich-Kwong- Gleichung und den sich aus der Theorie kritischer Phänomene ergebenden Werten oft gut mit Werten aus Messungen überein.

Kupfer

Montag, Januar 3rd, 2011

Schmelzpunkt: 1356 K, normaler Siedepunkt: 2868 k, molare Masse: 63.546 g/mol

Für flüssiges Kupfer liegen Dichte- Meßwerte in Abhängigkeit von der Temperatur im Bereich vom Schmelzpunkt bis 2000 K vor ( s. C. Cagran, A. Seifter, G. R. Pottlacher: Thermophysical Properties of solid and liquid copper, Schriften Forschungszentrum Jülich, Series Energy Technology, Vol.15, p 763-766, 2000). Die Dichte beim normalen Siedepunkt wurde aus diesen Daten extrapoliert. Damit ergab es sich auch für Kupfer die im Artikel „Flüssige Metalle“ vom 12.11.10 abgeleiteten Berechnungsgleichungen anzuwenden, die sich mit Gesetzmäßigkeiten kritischer Phänomene ableiten lassen (s. „Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene- ISBN 978-3-00-027253-0).

Die für flüssiges Kupfer bestehenden Volumen- Näherungen und die Einschätzung der Sattdampfvolumina für höhere Temperaturen sind in den nachfolgenden Diagrammen angegeben.

image195

 

image196

 

Die berechnete kritische Temperatur als grobe Näherung beträgt 5800 K.  Bisherige Einschätzungen der kritischen  Temperatur geben Werte zwischen 5400 bis 8000 K  an(s. H. Hess : Critical Data and Vapor Pressures for Aluminium and Copper, Z. Metallkd. 1998).

Wolfram

Mittwoch, Dezember 15th, 2010

Schmelzpunkt: 3680 K,  normaler Siedepunkt: ca. 5800 K, molare Masse: 183.85 g/mol 

Auch für das Metall Wolfram im flüssigen Zustand ist es möglich, sowohl die Flüssigkeits- als auch die Dampfvolumina entlang der Dampfdruckkurve als grobe Näherungen zu berechnen. Die s ergibt sich aus dem Artikel „Flüssige Metalle“ vom 12.10.10 und der Unterlage „Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“ (ISBN 978-3-00-027253-0).

image193

 

image194

Die für das Metall Wolfram als grobe Näherung  berechnete kritische Temperatur bträgt 11800 K.  Literaturangaben zur kritischen Temperatur entsprechen dieser Größenordnung (s. H. Hess, A. Kloss, a. Rakhel , H. Schneidenbach: Determination of Thermophysical Properties of Fluid Metals by Wire- Axplosion Experiments, International Journal of Thermophysics, Vol.20 No.4 1999).