Archive for the ‘Theorie der Flüssigkeiten’ Category
Zur Anwendung der Redlich- Kwong- und der Soave- Redlich – Kwong- Gleichung
Freitag, Oktober 13th, 2017Völlig neue Möglichkeiten der Berechnung von pvT- Daten der kritischen Region reiner Stoffe
Sonntag, August 20th, 2017Die Auswertung und Anwendung kritischer Phänomene der Theoretischen Physik
Dienstag, Juni 16th, 2015Die Bestimmung der Stoffeigenschaften von Flüssigkeiten und Gasen in der kritischen Region eines Stoffes ist mit besonderen Schwierigkeiten verbunden. Die Ursache dieser Schwierigkeiten ist letzlich das Eintreten kritischer Phänomene, die in der kritischen Region nicht den klassischen van der Waals- Teilchenwechselwirkungen entsprechen. Auf neue sich aus der physikalischen Theorie kritischer Phänomene ergebende Möglichkeiten ist hinzuweisen. Sie ergeben sich u. a. aus Untersuchungen zur Festlegung kritischer Exponenten mit völlig neuen Ergebnissen. Es zeigt sich auf der Grundlage dieser neuen Möglichkeiten, daß nun pvT- Daten auch im kritischen Gebiet mit erfreulicher Genauigkeit nur durch Rechnung wiedergegeben werden können. Das betrfft die pv- Werte auf der kritischen Isotherme und auf Isothermen unterhalb und oberhalb nahe der kritischen Temperatur und auch Näherungen für die unterhalb der kritischen Temperatur bestehenden Sättigungsvolumina v′, v′′ für Flüssigkeit und Dampf.
Da die Vermessung von pvT- Daten in den kritischen Bereichen von Stoffen schwierig, aufwändig und teuer ist, gibt es gar nicht so viele aus Stoffdatenbanken abrufbare Ergebnisse. Allerdings sind z. B. in der web-site „nist webbook“ für etliche technisch wichtige Stoffe Ergebnisse mit den wahrscheinlich gegenwärtig am besten geeigneten überwiegend empirischen Zustandsgleichungen mit „Java“ abrufbar. Auch für die jeweilige kritische Region geben die in „nist webbook“ verwendeten Zustandsgleichungen pvT- Daten an. Allerdings betonen die verschiedenen Autoren immer wieder die Feststellung: „The Uncertainties are higher….“. Trotz der labortechnisch mit Aufwand erfaßten Stoffdaten besteht die Einschätzung, daß mit den verwendeten weitgehend empirischen herkömmlichen Zustandsgleichungen im kritischen Gebiet die Realität mit nur größeren Fehlern beschrieben wird.
Sehr interessant ist nun ein Vergleich der Ergebnisse, die sich für die kritische Isotherme eines Stoffes mit den neuen sich aus der physikalischen Theorie kritischer Phänomene abgeleiteten Gleichungen und den bisherigen weitgehend empirischen Zustandsgleichungen ergeben. Es zeigt sich die in der Größenordnung der Werte weitgehende Übereinstimmung. Eigentlich ist dabei unklar, welcher der berechneten Werte der Realität mehr entspricht. Allerdings ist auf einen sehr wichtigen Unterschied hinzuweisen: Die neuen aus der physikalischen Theorie kritischer Phänomene folgenden Gleichungen benötigen nur allein die Kenntnis der kritischen Daten eines Stoffes, während bisherige Zustandsgleichungen neben zusätzlichen Meßwerterfassungen auch in der kritischen Region außerdem noch Anpassungsrechnungen der Meßwerte an die vorausgesetzte Zustandsgleichung erfordern.
Ergebnisse der Berechnung von Volumina auf der kritischen Isotherme eines Stoffes oder in ihrer Nähe bei vorgegebenem Druck sind bereits als Beispiele für etliche Stoffe in Artikeln dieses Bloggs im Vergleich zu Werten mit herkömmlichen empirischen Zustandsgleichungen genannt (s. z. B. Berechnungen des Verlaufs kritischer Isothermen/ September bis Oktober 2014 für Propylen, Wasser, Kohlenstoffdioxid, Methanol, Deuterium, Benzol, Wasserstoff, Helium u.a.).
Leider sind dem Autor keine weiteren pvT- Datenangaben bekannt, die qualitativ durch Meßwerte im kritischen Bereich ähnlich der „nist webbook“- Datenbank belegt sind. Es ist deshalb sehr wünschenswert, durch Meßwerte erfaßte pvT- Daten des kritischen Bereichs von weiteren Stoffen zu erhalten, um eine Nachrechnung mit den neuen aus der Theorie kritischer Phänomene nun vorliegenden Berechnungsgleichungen zum Ergebnisvergleich vornehmen zu können.
Aus den zur Theorie kritischer Phänomene durchgeführten Untersuchungen ergeben sich in Bezug auf das Verhalten von Flüssigkeiten wichtige Ergebnisse. Auch Flüssigkeiten besitzen ein pvT- Verhalten. Längst ist das nicht so ausgeprägt wie das von Gasen, da sich das Volumen viel weniger mit Druck und Temperatur ändert. Bei genauer Betrachtung aber, muß die Temperatur- und Druckabhängigkeit des Volumens (z.B. die Abhängigkeit des Sättigungsvolumens von der Temperatur) berücksichtigt werden. Dafür aber gibt es bisher kaum praktikable Theorie- Ansätze auf einer physikalisch begründeten Basis. Alle bisherigen Ansätze zu einer allgemeinen Theorie der Flüssigkeiten gehen letztlich immer vom jeweiligen Molekülaufbau, von den zwischenmolekularen Wechselwirkungen, von molekulartheoretischen Ansätzen der Quantenmechanik und Statistischen Thermodynamik bis hin zur Statistik mit Monte- Carlo- Modellen usw. aus. Die gesuchte Aussage zu einer möglichst allgemeinen Erklärung und mathematischen Fassung der Druck-Volumen- Temperatur- Eigenschaften von Flüssigkeiten wurde so bisher nicht gefunden.
Aus der physikalischen Theorie kritischer Phänomene ergibt sich nun aber eine Zustandsgleichung als eine Näherung speziell für Flüssigkeiten, die keineswegs nur in der kritischen Region, sondern auch für Temperaturen weit unter der kritischen Temperatur gilt. Damit kann nun das mit zunehmendem Druck sich verringernde Volumen einer Flüssigkeit entlang einer Isotherme bzw. anderer Zustandsänderungen berechnet werden- auch wenn diese Effekte klein sind. In der Gemischthermodynamik spielen diese Effekte aber eine weit größere Rolle. Es ist darauf hinzuweisen, daß nun mit Zustandsgleichungen speziell für Flüssigkeiten auch völlig neue Ansätze zur Thermodynamik von Mischungen entstehen. Mit herkömmlichen Zustandsgleichungen für Stoffgemische speziell zur Erfassung der flüssigen Phase sind oft große Schwierigkeiten verbunden, die bis heute nur mit hohem meßtechnischen und empirischen Aufwand für technische Belange gelöst werden müssen.
Die für Flüssigkeiten bestehenden Zustandsfunktionen haben zur Erklärung und Beschreibung des Verhaltens von Flüssigkeiten nur den kritischen Punkt eines Stoffes mit seinen kritischen Phänomenen als Ausgangspunkt, indem die sonst nur in einem engen Bereich um die kritische Temperatur gültigen Gesetze kritischer Phänomene auf Temperaturen weit unterhalb der kritischen Temperatur übertragen werden konnten. Das bedeutet, dass Flüssigkeitseigenschaften allein nur mit den kritischen Daten eines Stoffes und seiner Temperatur festgelegt sind und auch so als Näherung berechnet werden können.
Wegen der nun für Flüssigkeiten und realen Gasen auf Grundlage der Theorie kritischer Phänomene bestehenden pvT- Zustandsfunktionen ergibt sich durch Anwendung des Maxwell- Kriteriums sogar die Möglichkeit, die Sättigungsvolumina v‘ und v“ von Stoffen für Flüssigkeit und Dampf speziell in der kritischen Region in Abhängigkeit von der Temperatur als Näherung zu berechnen. Solch eine Möglichkeit bestand bisher gar nicht. Die Theorie und die Berechnungen dazu sind durchaus kompliziert. Eine kurze zusammenfassende Erklärung ist im Artikel „Die Bestimmung der Sättigungsvolumina von Flüssigkeit und Dampf in der kritischen Region von reinen Stoffen“ dieses Bloggs vom 30.Oktober 2014 gegeben (mit Rechenergebnissen für verschiedene Stoffe im Vergleich zur Datenbank „nist webbook“).
Da auf der Grundlage der zu kritischen Phänomenen durchgeführten Untersuchungen Näherungen zur Bestimmung der Volumina von Flüssigkeit und Dampf in Abhängigkeit von der Temperatur und des Drucks bestehen, können nun auch die sogen. Realgasfaktoren Z = pv/RT eines Stoffes als Temperaturfunktionen im Sättigungszustand als auch allgemein als Funktion des Drucks und der Temperatur berechnet werden. Dazu müssen nur die kritischen Daten eines Stoffes und ein pvT- Datentripel bei niedrigen Dampfdruck und entsprechend niedriger Temperatur bekannt sein (z. B. beim normalen Siedepunkt).
Auf die folgenden Veröffentlichungen des Autors, die die Thermodynamik von Flüssigkeiten und Gasen allgemein und speziell in der kritischen Region von Stoffen betreffen, ist hinzuweisen:
–„Stoffwerte von Flüssigkeiten und Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“, ISBN 978-3-00-027253-0, 2009
– „Die Berechnung von Druck- und Volumendaten reiner Stoffe“, ISBN 3-00-015256-3
– „Neue Berechnungsmöglichkeiten thermophysikalischer Daten für reine Stoffe und Gemische“, ISBN 3-00-018592-5, ISBN 978-3-018592-2.
Zur Genauigkeit der Berechnung von pvT- Daten in der kritischen Region
Montag, April 15th, 2013Für technisch wichtige Stoffe existieren heute recht genaue Zustandsgleichungen, die die Variablen Druck p, Temperatur T und Volumen v bzw. die Dichte ρ sowohl im Flüssigkeits- als auch im Gaszustand miteinander verbinden. Da es für die in der verfahrenstechnisch – großtechnischen Praxis bestehenden Anforderungen auf eine hohe Genauigkeit ankommt, reichen Berechnungsgleichungen auf Modellvorstellungen der Theoretischen Physik (auf der Basis der van der Waals- Gleichung und ihren vielen sogen. halbempirischen Weiterentwicklungen, der Virialgleichung usw. bis hin zur sogen. molekularen Thermodynamik) nicht aus. Deshalb müssen immer noch Zustandsgleichungen mit ausgeprägt empirischen und stoffspezifischen Anteilen verwendet werden, um die erforderliche Genauigkeit zu ermöglichen. Der Aufwand ist hoch. Er setzt sehr genaue und umfangreiche pvT- Messungen des jeweiligen Stoffes voraus, um die erforderlichen Anpassungen der experimentell ermittelten Zustandsdaten an Parameter vorausgesetzter Zustandsgleichungen zu ermöglichen. Die Erfolge dieser Vorgehensweise mit weitgehend empirischen und „halbempirischen“ Zustandsgleichungen sind offensichtlich.
Selbst für den die menschliche Existenz begründenden Stoff „Wasser“ sind solch weitgehend empirische Zusammenhänge auf der Grundlage sehr genauer pvT- Messungen entwickelt worden (entsprechend der sogen. IAPWS formulation- „International Association for the Properties of Water and Steam“), keineswegs aber auf der alleinigen Grundlage eines nur physikalisch begründeten Modells. Auch für die wichtigen Stoffe der Erdöl- und Erdgasgewinnung und Verarbeitung- wie z.B. Methan, Ethan……bis Benzol, Toluol usw.- existieren Zustandsgleichungen dieser Art.
Meßwerte vieler Substanzen sind heute in Datenbanken dokumentiert, die einen schnellen Zugriff (allerdings oft gebührenpflichtig) über das Internet gestatten (s. z.B. die umfangreiche Stoffdatensammlung „dechema.de/detherm“). Die Bereitstellung von Stoffdaten geht unterdessen so weit, für eine Vielzahl technisch wichtiger Stoffe komplette pvT-Datensätze und auch kalorische Daten anzugeben (s. „nist webbook“), die nach Vorgabe von Druck und Temperatur entsprechend der jeweiligen Dichte bzw. des Volumens mit einer weitgehend an Meßwerte angepaßten Zustandsgleichung ermittelt wurden- und das sowohl für die flüssige Phase und auch für die Gasphase und überkritische Zustände. Die Fehler dabei sind durchaus gering und liegen oft nur im Prozentbereich oder sogar darunter. Sie sind so geeignet für verfahrenstechnische Auslegungen großtechnischer Prozesse mit solchen Stoffen.
Dies alles trifft zu nur für pvT- Zustände weiter entfernt von den kritischen Daten. Soll bei Vorgabe von Druck und Temperatur in einem nahkritischen Bereich die Dichte bzw. das Volumen eines Stoffes mit einer solchen Zustandsgleichung bestimmt werden (dokumentiert z.B. in „nist webbook“) ist das zwar möglich- die Fehler aber werden dann oft als „höher“ im Vergleich zu den Fehlern angegeben, die in Zuständen weiter entfernt von den kritischen Daten festgestellt sind. So heißt es dann z.B. bei nist webbook für Ammoniak: „The uncertainties of the equation of state are o.2% in density….., except in the critical region“.
Und so etwa lauten ähnliche Feststellungen für auch ander Stoffe:
– „Uncertainties will be higher near the critical point“- nist webbook für H2S
– „In the critical region the uncertainties are higher for all properties, except vapor pressure“- nist webbook für SO2.
Die Liste von Stoffen mit der Aussage „except in the critical region“ zu den in der Literatur angegebenen Zustandsgleichungen kann fortgesetzt werden, z. B. mit solchen grundlegenden und strukturell einfachen Stoffen wie Pentan, Propylen, Methan u.a. So ist also die Feststellung gerechtfertigt, dass die Ungenauigkeiten bisheriger veröffentlichter Zustandsgleichungen speziell in der kritischen Region selbst nach den durchgeführten sehr genauen pvT-Messungen und Anpassungen immer noch recht hoch sind. Der Aufwand ist hoch in Relation zum Ergebnis.
Die Hoffnung, dass sich mit den von der Theoretischen Physik festgestellten Gesetzmäßigkeiten kritischer Phänomene akzeptable Berechnungsgleichungen ohne empirische Anteile ergeben könnten, die zwar nicht der klassischen van der Waals- Thermodynamik und den daraus resultierenden Gleichungen bis hin zur sogen. molekularen Thermodynamik entsprechen, aber doch ausreichenden Genauigkeitsansprüchen genügen, hat sich seit Jahren nicht erfüllt.
Nun hat es sich aus theoretischen Erwägungen zur Physik kritischer Phänomene ergeben, einen anderen als bisherige Ansätze zur Auswertung dieser Phänomene zu verfolgen.
Das bisherige Theorie- Ergebnis ist, dass man bei Kenntnis nur der kritischen Daten eines Stoffes weitgehend zutreffende Näherungsaussagen zum pvT- Verlauf der kritischen Isotherme bzw. von nahkritischen Isothermen erhalten kann- ohne zusätzliche Meßwerte. Für Stoffe also, zu denen keine weiteren Messungen außer denen der kritischen Daten vorliegen, können dann zumindest Näherungen des Isothermen -Verlaufs in der kritischen Region abgeleitet werden. Da das für sehr, sehr viele Stoffe zutrifft, ist es also durchaus möglich, die Daten der kritischen Isotherme und auch pv-Daten etwas unterhalb und oberhalb der kritischen Temperatur als Näherung zu berechnen. Nähere Ausführungen zur Theorie und zu Beispielrechnungen sind im Artikel vom 1.7.12 in www.dr-tampe.de u.a. enthalten.
Bisher war es nicht möglich, die Sättigungsvolumina der siedenden Flüssigkeit und des Sattdampfes für Temperaturen kurz unter der kritischen Temperatur vorauszuberechnen. Mit den neuen Theorie- Ergebnissen zu kritischen Phänomenen erweist sich das unterdessen als möglich. Die berechneten Volumina sind Näherungen, die durchaus weitgehend mit Meßwerten übereinstimmen (s. Artikel“ Die Berechnung von Daten für Zustände kurz unter der kritischen Temperatur“ in www.dr-tampe.de .)
Die Anwendbarkeit kritischer Phänomene zur Berechnung von pvT- Daten
Samstag, Februar 23rd, 2013Die für Stoffeigenschaften maßgeblichen Wechselwirkungen zwischen den Molekülen und Atomen eines Stoffes haben eine Reichweite von nur einigen Molekül- bzw. Atomdurchmessern. Im kritischen Zustand und in seiner Nähe entsteht allerdings ein universelles Verhalten physikalischer Größen wegen des Eintretens sogen. „kritischer Fluktuationen“, die sich wie eine beträchtliche Vergrößerung der sogen. Korrelationslänge auswirken. Es entstehen kritische Phänomene. Dies hat zur Folge, daß Eigenschaften völlig unterschiedlicher Stoffe sich im nahkritischen Zustand nach analog gleichen Gesetzmäßigkeiten verhalten, so als ob individuelle Stoffeigenschaften verschwinden.
Kritische Phänomene sind z. B. erklärt für
– den Dichtesprung zwischen flüssiger und dampfförmiger Phase
– die Differenz vom Druck zum kritischen Druck bzw. von der Dichte zur kritischen Dichte auf der kritischen Isotherme
– Kompressibilitäten
-Wärmekapazitäten
– magnetische Zustände (Suszepilitäten) bei verschwindendem Feld.
Die Aussagen der klassischen Theorien treffen für nahkritische Zustände realer Gase und Flüssigkeiten nicht zu.
Die heutigen thermischen Zustandsgleichungen als Grundlage der Berechnung von Stoffdaten für Flüssigkeiten und Gasen beruhen alle letzlich auf der physikalisch begründeten van der Waals- Gleichung , der Virialgleichung, auf Ansätzen der Statistischen Thermodynamik und vor allem immer wieder auf Parameter – Anpassungen empirischer Berechnungsgleichungen an Meßwerte. Der Aufwand ist hoch. Die empirische Vielfalt ist kaum noch überschaubar. Sie ist mit hohem Aufwand zur Bestimmung der Meßwerte verbunden. Die unter Physikern manchmal ironisch geäußerte Kritik, daß die sogen. „halbempirischen Zustandsgleichungen“ und andere rein empirische Gleichungen (z. B. die für nahkritische Zustände ) ja höchstens ein empirisch erforderliches Niveau von wenigstens nur zur Hälfte oder weniger erfüllen, charakterisiert die Situation.
Die Theoretische Physik muß trotz der unzweifelbaren verfahrenstechnischen Empirie- Erfolge der letzten Jahrzehnte Richtschnur im Labyrinth der Möglichkeiten bleiben. Die Suche nach physikalisch begründeten neuen Ansätzen mit geringen empirischen Anteilen sollte gerade auf dem Gebiet der Berechnung von Druck p, Volumen v, Temperatur T- Daten aktuell sein und bleiben.
Die Theoretische Physik formuliert eine sogenannte Universilatitätshypothese: „Die kritischen Exponenten sind fast universell, d. h. für alle thermodynamischen Systeme gleich.“ (s. Nolting: Grundkurs Theoretische Physik, Statistische Physik, Springer Verlag 2004), (R.B. Griffiths: Phys. Rev.Lett.24, 1949 (1970)). Diese Hypothese wird unterdessen als bewiesen betrachtet (Renormierungsgruppentheorie von K. Wilson).
Entsprechend der Universalitätshypothese haben also z. B. die kritischen Exponenten β und δ der kritischen Phänomene – Dichtesprung und Druck- bzw. Dichtedifferenz auf der kritischen Isotherme für völlig verschiedene Stoffe die jeweils fast gleichen Werte. Diese sehr erstaunliche Eigenschaft wird als Folge einer beträchtlichen Vergrößerung der Korrelationslänge von Teilchenwechselwirkungen in der Nähe des kritischen Punktes erklärt.
Im Ergebnis der für den Dichtesprung und die kritische Isotherme durchgeführten Untersuchungen erweist es sich als möglich, wesentliche Schlußfolgerungen zum Verhalten realer Gase und Flüssigkeiten in der Umgebung des kritischen Punktes und auch für Zustände weit unter der kritischen Temperatur abzuleiten.
Und hier ist das theoretische Problem.
Die Gesetzmäßigkeiten kritischer Phänomene sind nur erklärt in einem engem Intervall von Zustandsdaten um den kritischen Punkt. Die Erweiterung des Gültigkeitsbereichs von Gesetzmäßigkeiten kritischer Phänomene weiter entfernt vom kritischen Punkt, also nicht nur für Zustände in unmittelbarer Nähe des kritischen Punktes, dürfte deshalb unmöglich sein. Aber das ist nicht der Fall. Denn es zeigt sich bei der Auswertung von Meßdaten an den verschiedensten Stoffen, daß es möglich ist, Gesetzmäßigkeiten kritischer Phänomene zur Bestimmung von Zustandsdaten auch weit entfernt von der kritischen Temperatur und vom kritischen Druck anzuwenden. Die Ergebnisse stimmen dann durchaus mit Meßwerten überein.
In Auswertung solcher Ergebnisse der Untersuchung von Stoffwerten wurde als Hypothese die Erweiterbarkeit der Gesetzmäßigkeiten kritischer Phänomene auf Zustände weiter entfernt vom kritischen Punkt vorausgesetzt. Durch die vorliegenden Ergebnisse mit Untersuchungen an konkreten Stoffdaten ist diese Hypothese als berechtigt dargestellt.
Die physikalische Begründung allerdings fehlt.
Das Anliegen dieser Schrift ist es, theoretische Physiker und Theoretiker der physikalischen Chemie und auch theoretische Kenntnisse besitzende Verfahrenstechniker zu veranlassen, die Gründe der Erweiterbarkeit von Gesetzmäßigkeiten kritischer Phänomene weit über nahkritische Verhältnisse hinaus zu suchen und zu benennen.
Ergebnisse bisheriger Untersuchungen auf der Grundlage der o.gen. Hypothese sind die folgenden.
Für reale Gase niedriger bis hoher Drücke ergibt sich auf der gen. Grundlage ein funktionaler Zusammenhang zwischen dem Druck p und dem molaren Volumen v auf einer Isotherme der Temperatur T entsprechend der Gleichung
, (I)
wobei ps der Dampfdruck, v“ das molare Sättigungsdampfvolumen und R die allgemeine Gaskonstante ist.
Es zeigt sich weiter, das es mit den auf der Grundlage der Theorie kritischer Phänomene gewonnenen Ergebnisse möglich ist, eine allgemeine Beziehung abzuleiten, die die Berechnung des molaren Volumens v“ trocken gesättigten Dampfes bei bekanntem Dampfdruck ps als grobe Näherung gestattet:
. (II)
Dabei sind a und b die Parameter der klassischen van der Waals- Gleichung realer Gase, die nur von den kritischen Daten Tk (kritische Temperatur) und pk (kritischer Druck) abhängen. Die sinnvolle Anwendung dieser Gleichung ist für Zustände näherungsweise von niedrigen bis hohen Temperaturen gegeben, nicht aber für nahkritische Verhältnisse.
In Auswertung der zu kritischen Phänomenen durchgeführten Untersuchungen ergab sich weiterhin die Gleichung, (III)
die von niedrigen bis zu hohen Temperaturen gilt. Dabei ist der kritische Exponent β mit dem Wert 1/3 vorausgesetzt. Kv ist die sogen. Dichtesprungkonstante, die einfach berechnet werden kann. Die obige Gleichung (III), die dem Dichtesprung zwischen siedender Flüssigkeit des Volumens v‘ und dem Sattdampfvolumen v“ entspricht, ermöglicht die Berechnung des Sättigungsvolumens v‘ der Flüssigkeit bei gegebener Temperatur, wenn v“ bereits mit (II) berechnet werden konnte. Für das Siedevolumen der Flüssigkeit ergibt sich näherungsweise
. (IV)
Damit sind bei vorgegebener Temperatur und bekanntem Dampfdruck die Sättigungsvolumina v‘ und v“ eines Stoffes näherungsweise berechenbar, wenn die kritischen Daten bekannt sind.
Für Zustände kurz unter der kritischen Temperatur bestehen wegen der am kritischen Punkt sich beträchtlich vergrößernden Fluktuationen veränderte Bedingungen, die zu anderen sich aus (III) ableitbaren Berechnungsgleichungen führen. Damit sind dann sogar die Sättigungsvolumina v‘ und v“ und auch der Dampfdruck ps für Temperaturen kurz unter der kritischen Temperatur als Näherungen berechenbar.
Speziell für Flüssigkeiten in nahkritischen und auch bis weit unterkritischen Zuständen kann eine Zustandsfunktion abgeleitet werden, die die Berechnung des jeweiligen Flüssigkeitsvolumens bei vorgegebenem Druck und vorgegebener Temperatur als Näherung gestattet. Damit ist dann das Flüssigkeitsverhalten eines Stoffes für das gesamte Existenzgebiet vom Dampfdruck sogar bis zu höheren Drücken im 10 MPa- Bereich und teilweise darüber erfaßt- wie Nachrechnungen an gut vermessenen Stoffbeispielen zeigen.
Alle bisherigen Ansätze zu einer allgemeinen Theorie der Flüssigkeiten gehen letztlich vom jeweiligen Molekülaufbau, von den zwischenmolekularen Wechselwirkungen, von molekulartheoretischen Ansätzen der Quantenmechanik und Statistischen Thermodynamik bis hin zur Statistik mit Monte-Carlo- Modellen usw. aus. Die gesuchte Aussage zu einer möglichst allgemeingültigen Erklärung und mathematischen Fassung der pvT- Eigenschaften von Flüssigkeiten wurde so bisher nicht gefunden.
Für die bei der Auswertung kritischer Phänomene gefundene allgemeine Zustandsfunktion von Flüssigkeiten ist als Ausgangspunkt zur Beschreibung und Erklärung des Verhaltens von Flüssigkeiten nur der kritische Punkt eines Stoffes mit seinen kritischen Phänomenen erklärt, indem die sonst nur in einem engen Bereich um die kritische Temperatur gültigen Gesetze kritischer Phänomene auf Temperaturen weit unterhalb der kritischen Temperatur übertragen werden. Die physikalische Erklärung dazu fehlt!
Mitteilung zu Zustandsgleichungen für reale Gase und Flüssigkeiten- abgeleitet aus der Theorie kritischer Phänomene
Freitag, November 16th, 2012Für reale Gase wurde mit Gesetzmäßigkeiten kritischer Phänomene die Funktion
(1)
formuliert. Dabei ist p der Druck/MPa, ps der Dampfdruck/MPa, T die absolute Temperatur/K, v das Volumen/cm³/mol, v“ das Sättigungsdampfvolumen cm³/mol und R die allgemeine Gaskonstante 8.314 J/mol K. Die Funktion (1) ergibt sich allein nur mit Kenntnissen über kritische Phänomene ohne Voraussetzung und Anwendung von physikalischen Theorien, die die Anwendung der van der Waals-Thermodynamik und ihren empirischen Weiterentwicklungen, der physikalisch begründeten Virialgleichung und ihren Weiterentwicklungen oder gar der sogen. molekularen Thermodynamik und damit auch deren Vorstellungen über den Molekülaufbau des jeweiligen Stoffes und der molekularen Wechselwirkungen voraussetzen. Die Grundlage dieser Funktion ist nicht die bisherige Thermodynamik, sondern allein nur ein thermodynamisches Modell begründet mit kritischen Phänomenen.
Für Gase besteht neben der physikalisch begründeten van der Waals- Gleichung die ebenfalls physikalisch begründete Virial-Gleichung . Grundlage der Virialgleichung ist die Taylor- Entwicklung des Realgasfaktors Z=pv/RT in eine Reihe für die Dichte 1/v→0. Als Reihenentwicklung wird
Z=1+B/v+C/v²+…… (2)
erhalten. Die Koeffizienten B,C,….werden als 2., 3. usw. Virialkoeffizient bezeichnet. Sie sind nur temperaturabhängig.
Die Berechnung von Zustandsdaten realer Gase gelingt mit der Virialgleichung als Näherung, wenn zumindest der 2. und evtl. 3. Virialkoeffizient bekannt ist. Man sagt, die Funktion Z= 1+B/v ist als Näherung ausreichend bis zu Gasdichten von ca. 0.5 ρk, die Funktion Z= 1+B/v+C/v² bis zu Dichten von ca. o.75 ρk (ρk- kritische Dichte).
Die der o.gen. Funktion (1) entsprechenden Virialkoeffizienten können berechnet werden. Die Kenntnis des 2. Virialkoeffizienten z. B. ist aus folgenden Gründen sinnvoll: Der 2. Virialkoeffizient eines Stoffes nämlich steht mit dem Wechselwirkungspotential der zwischenmolekularen Kräfte zweier Moleküle eines Stoffes in Verbindung. Wenn man den 2. Virialkoeffizienten kennt, muß es der Theoretischen Physik möglich sein, Aussagen zu der wichtigen Potentialfunktion der zwischenmolekularen Kräfte eines Stoffes abzuleiten. Die Statistische Thermodynamik formuliert für den 2. Virialkoeffizienten
. (3)
Dabei ist NA die Avogadrosche Konstante, Epot ist das Potential der zwischenmolekularen Kräfte, k ist die Boltzmann- Konstante und r ist der radiale Abstand zweier Moleküle des jeweiligen Stoffes. Wenn also der Virialkoeffizient B(T) bekannt ist, können Aussagen zu dem molekulartheoretischen sehr grundlegenden Potentialverlauf Epot(r) getroffen werden. Und wenn das möglich ist, ist letzlich auch eine Aussage zum Potentialverlauf zwischenmolekularer Kräfte verschiedener Stoffe möglich, so daß damit dann Gemischeigenschaften erfaßt werden können. Die hierzu erforderlichen weiteren Untersuchungen können hier allerdings nicht dargelegt werden.
Der zur näheren Bestimmung des Potentials zwischenmolekularer Kräfte erforderliche 2. Virialkoeffizient, der sich entsprechend (1) und (2) ergibt, lautet
. (4)
Am Beispiel Wasser soll gezeigt werden, daß der nach (4) berechnete 2. Virialkoeffizient durchaus dem nach Meßwerten entspricht.
Mit Hilfe der o.gen. Taylor- Entwicklung ist ersichtlich, daß für über alle Grenzen wachsendes Volumen
(5)
gilt (s. z.B. J. Gmehling, B. Kolbe: Thermodynamik, VCH, 1992). Damit besteht auf einer Isothermen die Beziehung
(6).
Das ist aus folgendem Grund interessant: Der Grenzwert auf der linken Gleichungsseite wird experimentell bestimmt, indem bei T=konstant bei vorgegebenem Druck für p gegen O das jeweils zugehörige Volumen gemessen wird. Dies sind dann alles Stoffdaten ohne Bezug zu den Sättigungsdaten v“ und ps. Und trotzdem besteht laut der obigen Gleichung ein Zusammenhang mit dem Sättigungsvolumen v“ und dem Dampfdruck ps! Eine Information zu v“ und ps ist also in dem o.gen. bei verschwindenden Druck experimentell bestimmbaren Grenzwert bereits enthalten.
So wie es möglich war, für reale Gase die Zustandsfunktion (1) entsprechend Gesetzmäßigkeiten kritischer Phänomene abzuleiten, zeigt es sich, daß auch für Flüssigkeiten eine druckexplizite allgemeine Zustandsfunktion ebenfalls nur auf der Grundlage kritischer Phänomene in der Form p = p(v,T) als Näherung bestimmt werden kann. Kenntnisse zum Molekülaufbau und zu Wechselwirkungen innerhalb der Moleküle und zwischen den Molekülen des Materials sind dabei erstaunlicherweise gar nicht erforderlich. Allerdings sind die kritischen Daten pk, vk, Tk und das Flüssigkeitssättigungsvolumen v‘ als bekannte Parameter vorauszusetzen. Die Ableitung der gen. Zustandsfunktionen für reale Gase und für Flüssigkeiten durch Auswertung von Gesetzmäßigkeiten kritischer Phänomene soll mit einer entsprechenden Veröffentlichung 2013 gezeigt werden.
Eine Zustandsgleichung für reale Gase- abgeleitet aus der Theorie kritischer Phänomene
Freitag, Mai 1st, 2009Dieser private Blog dokumentiert ausschließlich Theorie – Ergebnisse der Thermodynamik als Teil der Theoretischen Physik auch zur Fixierung des entsprechenden Urheberrechts. Es erfolgt keine Geschäftstätigkeit, wirtschaftliche Interessen werden nicht verfolgt. Personenbezogene Daten werden nicht erhoben.
In diesem Blog sind neue Theorie- Ergebnisse und ihre praktische Anwendung in der Technischen Thermodynamik dargestellt. Es handelt sich immer um Weiterentwicklungen der klassischen Thermodynamik auf der Grundlage von Zustandsgleichungen und der Anwendung von Gesetzmäßigkeiten kritischer Phänomene zur Berechnung von Stoffdaten speziell der kritischen Region und auch weit unter der kritischen Temperatur. Die Ergebnisse sind zusammengefasst in der Veröffentlichung
„Der erstaunliche Einfluss kritischer Phänomene auf das Zustandsverhalten reiner Stoffe“, ein Forschungsbericht,2019, ISBN 978-3-00-062342-4.
Die Cover- Rückseite dieser Veröffentlichung teilt mit:
Damit bestehen nun Möglichkeiten der Berechnung thermophysikalischer Daten der kritischen Region (als Näherung) und auch weit unter der kritischen Temperatur mit Mitteln der physikalischen Theorie kritischer Phänomene.
Wichtige Artikel dieses Blogs zum Verständnis der Theorie- Grundlagen sind:
– „Die nun mögliche Berechnung von pvT- Daten reiner Stoffe in nahkritischen Zuständen“ – 13.1.2019
– „Die Feststellung weiterer und bisher nicht bekannter kritischer Exponenten und ihre Anwendung“ – 1.1.2019
– „Der erstaunliche Einfluss kritischer Exponenten auf das Verhalten von Flüssigkeiten und Gasen und ihren Sättigungsdaten“ – 3.5.2018
– „Die Soave- Redlich- Keong- Zustandsgleichung völlig neu angewendet für reale Gase, für Flüssigkeiten und zur Berechnung der kritischen Temperatur“ -13.10.2017
– „Die allgemeine Dampfdruckgleichung“ -28.7.2016
An Beispielen wird für etliche Stoffe gezeigt, dass der Dampfdruckverlauf als Temperaturfunktion und die Volumen- bzw. Dichtesättigungswerte in Abhängigkeit von der Temperatur berechnet werden können, wenn nur wenige Messwerte bekannt sind (kritische Daten und die des normalen Siedepunkts). Das z. B. gelingt sogar auch für Metalle und ihre hochsiedenden Verbindungen. Speziell für Metalle u. a. Stoffe wird gezeigt, dass sich die kritische Temperatur, die Dampfdruckfunktion und auch die Sättigungsdaten als Näherungen berechnen lassen, wenn allein nur die pvT- Werte des normalen Siedepunkts bekannt sind.
______________________________________________________________________________________________________________________________________________________________________________
Statt einer der üblichen Zustandsgleichungen für reale Gase kann die folgende einfache Gleichung für den funktionalen Zusammenhang von Druck p/ MPa des Gases, seiner Temperatur T / K und dem spezifischen Volumen v /cm^3/mol angewendet werden:
. (1)
Dabei ist p.s der Dampfdruck/ MPa und v“ das Sättigungsdampfvolumen / cm^3/mol. R ist die allgemeine Gaskonstante 8.314 J/mol K.
Die obige Gleichung wurde durch eine Erweiterung der physikalischen Theorie kritischer Phänomene auch auf Zustände weit unterhalb der kritischen Temperatur als eine einfache Näherung abgeleitet.
Zwischen dem Volumen v“ des gesättigten Dampfes, der Temperatur T und dem Dampfdruck p.s besteht die folgende Näherungsbeziehung :
. (2)
Die Parameter a, b sind dabei die Konstanten der klassischen van der Waals- Gleichung
. (3)
Damit ist es immer möglich, bei bekanntem Dampfdruck und bekannten kritischen Daten p.k- kritischer Druck/MPa und T.k-kritische Temperatur/ K das Sättigungsdampfvolumen näherungsweise zu berechnen.
Außerdem ist es so auch immer möglich, bei bekanntem Dampfdruck durch Anwendung von Gleichung (1) Zustandsdaten eines realen Gases zu berechnen!
Die komplette Theorie hierzu- auch ein Zusammenhang mit der Theorie der Flüssigkeiten- ergibt sich aus einer Ergänzung der klassischen Thermodynamik durch Schlußfolgerungen aus der physikalischen Theorie kritischer Phänomene und mit einem neuen molekular- theoretischen Ansatz zur Festlegung des Eigenvolumens von Molekülen. Die sich dadurch ergebenden völlig neuen Möglichkeiten der Berechnung
– von p,v,T- Daten realer Gase und Flüssigkeiten ohne Anwendung bisheriger Zustandsgleichungen
-von Sättigungsdaten für Dampf und Flüssigkeit von reinen Stoffen als Temperaturfunktion bis hin zur kritischen Temperatur
– des Dampfdrucks von reinen Stoffen als Temperaturfunktion (ohne Benutzung der sonst üblichen stoffabhängigen Parameter)
– der Verdampfungsenthalpie reiner Stoffe als Temperaturfunktion bis nahe an die kritische Temperatur
– von Freien Enthalpien reiner Stoffe
– sehr genauer Siedevolumina von Flüssigkeiten in Abhängigkeit von der Temperatur
sind in den einzelnen Artikeln dieses Blogs beschrieben.
Notwendige Erläuterung und Zusammenfassung zum Verständnis der wichtigsten Ergebnisse, die dargestellt werden:
Die für Stoffeigenschaften maßgeblichen Wechselwirkungen zwischen den Molekülen und Atomen eines Stoffes haben normalerweise eine Reichweite von nur einigen Molekül- bzw. Atomdurchmessern. Im kritischen Zustand und in seiner Nähe entsteht allerdings ein universelles Verhalten physikalischer Größen wegen des Eintretens sogen. „kritischer Fluktuationen“, die sich wie eine beträchtliche Vergrößerung der Teilchenwechselwirkungen auswirken. Dies hat zur Folge, daß Eigenschaften völlig unterschiedlicher Stoffe sich im nahkritischen Zustand nach analog gleichen Gesetzmäßigkeiten verhalten, so als ob individuelle Stoffeigenschaften verschwinden.
Kritische Phänomene sind z. B. erklärt für
– den Dichtesprung zwischen flüssiger und dampfförmiger Phase
– die Differenz vom Druck zum kritischen Druck bzw. von der Dichte zur kritischen Dichte auf der kritischen Isotherme
– Kompressibilitäten
– Wärmekapazitäten
– magnetische Zustände ( Suszeptibilitäten) bei verschwindendem Feld.
Die Aussagen der klassischen Theorien entsprechend der van der Waals- Gleichung und der darauf aufbauenden empirischen Gleichungen treffen für nahkritische Zustände realer Gase und Flüssigkeiten nicht mehr zu. Für nahkritische Zustände gelten Gesetzmäßigkeiten kritischer Phänomene!
Zum besseren Verständnis der Situation ist folgendes zu erklären: Die theoretische Grundlage zur Beschreibung des Verhaltens realer Gase ist bekanntlich mit der van der Waals- Gleichung und mit der der statistischen Thermodynamik entsprechenden Virialgleichung gegeben. Das ist auch der Ausgangspunkt für viele Weiterentwicklungen- aber dann immer auf weitgehend empirischer Basis.
Die van der Waals- Gleichung beschreibt die Zustände realer Gase und sogar auch von Flüssigkeiten qualitativ richtig, quantitativ aber zur Auslegung technischer Abläufe keineswegs ausreichend. Die Ungenauigkeiten im Zweiphasengebiet und für Daten in der Nähe des kritischen Punktes können groß sein. Vor allem Flüssigkeitszustände werden gar nicht oder nur ungenau erfaßt. Diese Feststellungen betreffen keineswegs nur die van der Waals- Gleichung, sondern auch die in der Technischen Thermodynamik entstandenen „halbempirischen Zustandsgleichungen“ von Soave, Redlich, Kwong und Peng, Robinson u.a., die heute weltweit zur Berechnung von Zustandsdaten angewendet werden.
Die heutigen thermischen Zustandsgleichungen als Grundlage der Berechnung von Stoffdaten für Flüssigkeiten und Gase beruhen alle letzlich auf der physikalisch begründeten van der Waals- Gleichung, der Virialgleichung, auf Ansätzen der statistischen Thermodynamik und vor allem immer wieder auf Parameter- Anpassungen empirischer Berechnungsgleichungen an Meßwerte. Der Aufwand ist hoch. Die empirische Vielfalt ist für Praktiker kaum noch überschaubar. Die unter Physikern manchmal ironisch geäußerte Kritik, daß die sogen. „halbempirischen Zustandsgleichungen“ der Technischen Thermodynamik und Verfahrenstechnik ein selbst empirisch erforderliches Niveau ja eigentlich nur zur Hälfte erfüllen, charakterisiert die Situation.
Die Theoretische Physik muß trotz der unbezweifelbaren verfahrenstechnischen Empirie – Erfolge der letzten Jahrzehnte Richtschnur im Labyrinth der Möglichkeiten bleiben. Die Suche nach physikalisch begründeten neuen Ansätzen mit geringeren empirischen Anteilen sollte gerade auf dem wichtigen Gebiet der Berechnung von Druck p, Volumen v, Temperatur T- Daten aktuell sein und bleiben.
Die für Praxis- Anwendungen erfolgreichen bisherigen Ansätze der Technischen Thermodynamik und Verfahrenstechnik beruhen letzlich immer auf sogen. “ mean- field“- Theorien. Das einzelne Teilchen befindet sich dabei in einem mittleren Feld, das von allen anderen Teilchen verursacht wird. Fluktuationen des einzelnen Teilchens werden vernachlässigt.
In der Nähe des kritischen Punktes gilt diese Näherung nicht mehr, da die stattfindenden Fluktuationen nicht mehr vernachlässigt werden werden dürfen. Die Rechnungen mit den klassischen Theorien führen zu falschen Ergebnissen. Erst mit den nun von der Theoretischen Physik formulierten Gesetzmäßigkeiten kritischer Phänomene können richtige Ergebnisse gewonnen werden.
Eigentlich sollte es naheliegend sein, die Gesetzmäßigkeiten kritischer Phänomene in die Theorie- Ansätze der Technischen Thermodynamik, Physikalischen Chemie und Verfahrenstechnik einzubeziehen. Leider ist das in Bezug auf das Zustandsverhalten von Flüssigkeiten und realen Gasen nicht geschehen, obwohl das- wie sich zeigen wird- möglich ist.
Zum Verständnis der physikalischen Theorie und als kurze Zusammenfassung ist zu sagen: Die Theorie stellt fest, daß sich physikalische Größen f(x) in der Nähe des kritischen Punktes wie
verhalten. Dabei ist x eine Variable, die am kritischen Punkt Null ist. Der Exponent λ wird kritischer Exponent genannt. Er ist mit
definiert. Bei Existenz des Grenzwertes λ wird- f(x) verhält sich wie
gesagt. Die Definition der kritischen Exponenten umfaßt keineswegs nur die Proportionalität
,
sondern auch komplexere Zusammenhänge- wie
, (A, B,…….Konstanten, y>0).
Die physikalische Größe f(x) kann der Dichtesprung ρ‘-ρ“ zwischen der flüssigen und dampfförmigen Phase des Stoffes sein, wobei x die Differenz zwischen der jeweiligen Temperatur T und der kritischen Temperatur Tk ist.
Die physikalische Größe f(x) kann auch die Differenz vom Druck p zum kritischen Druck pk auf der kritischen Isotherme sein, wobei x Differenz zwischen der Dichte ρ und der kritischen Dichte ρk auf dieser Isotherme ist.
Für diese beiden kritischen Phänomene werden für nahkritische Zustände im einfachsten Fall die Relationen
vorausgesetzt. Dabei sind const1 und const2 stoffspezifische Konstanten; sgn ist die Vorzeichenfunktion, die je nach Vorzeichen des Arguments +, – 1 ergibt; die Exponenten β und δ sind kritische Exponenten.
Die Theoretische Physik formuliert eine sogen. Universalitätshypothese: „Die kritischen Exponenten sind fast universell, d. h. für alle thermodynamischen Systeme gleich“ (Nolting: Grundkurs theoretische Physik 6, Statistische Physik, Springer Verlag 2004), (R.B. Griffiths: Phys.Rev.Lett.24,1949(1970)). Diese Hypothese wird unterdessen als bewiesen betrachtet ( Renormierungsgruppentheorie von K. Wilson).
Entsprechend der Universalitätshypothese haben also die kritischen Exponenten β und δ der kritischen Phänomene- Dichtesprung und Druck- bzw. Dichtedifferenz auf der kritischen Isotherme für völlig verschiedene Stoffe die jeweils gleichen Werte. Diese sehr erstaunliche Eigenschaft wird als Folge einer beträchtlichen Vergrößerung der Reichweite von Teilchenwechselwirkungen in der Nähe des kritischen Punktes erklärt.
Der kritische Exponent β wird in der Literatur mit Werten 1/3, 0.34,0.36,0.37 angegeben. Die Variation der Werte ist gering und evtl. mit den Schwierigkeiten der Messung zu erklären.
Der kritische Exponent δ wird mit 4.4 +,- 0.4 angegeben (Nolting, s.o.). Dieser Exponent ist mit einem weitgehend unscharfen Wert von 4.0 bis 4.8 benannt. Die Frage ist, ob für die etwas unterschiedlichen β- Werte und für das große δ- Intervall die Ungenauigkeit der Messung die Ursache ist oder der jeweilige kritische Exponent doch etwas vom Stoff abhängig ist. Selbst Nachfragen bei namhaften theoretischen Physikern konnten diese Frage nicht völlig klären. Teilweise wurde der Hinweis auf feste Werte der kritischen Exponenten entsprechend der Universalitätshypothese gegeben, teilweise wurde eine gewisse Variabilität kritischer Exponenten bei molekular komplizierter aufgebauten Substanzen (bei z. B. C- Doppelbindungen, aromatischen Ringen usw.) nicht ausgeschlossen.
Im Ergebnis der für den Dichtesprung und die kritische Isotherme durchgeführten Untersuchungen ist es möglich, wesentliche Schlußfolgerungen zum Zustandsverhalten realer Gase und von Flüssigkeiten in der Umgebung des kritischen Punktes und für Zustände weit ab von der kritischen Temperatur abzuleiten. Die Erweiterung des Gültigkeitsbereichs von Theorie- Ansätzen kritischer Phänomene nicht nur für Zustände in unmittelbarer Nähe des kritischen Punktes erfolgt als Hypothese unter Einbeziehung mean field- theoretischer Ansätze, die durch die vorliegenden Ergebnisse mit Untersuchungen an konkreten Stoffdaten als berechtigt dargestellt ist.
Für reale Gase niedriger bis hoher Drücke ergibt sich auf dieser Basis ein funktionaler Zusammenhang zwischen dem Druck p und dem molaren Volumen v auf einer Isotherme der Temperatur T entsprechend der Gleichung
, (I)
wobei ps der Dampfdruck, v“ das molare Sättigungsdampfvolumen und R die allgemeine Gaskonstante ist.
Es zeigt sich weiter. daß es mit den hier auf der Grundlage der Theorie kritischer Phänomene gewonnenen Ergebnissen möglich ist, eine allgemeine Beziehung abzuleiten, die die Berechnung des molaren Volumens v“ trocken gesättigten Dampfes bei bekanntem Dampfdruck als Näherung erlaubt:
. (II)
Dabei sind a und b die Parameter der klassischen van der Waals- Gleichung realer Gase mit a= 27R²Tk²/64pk und b=RTk/8pk, wobei pk der kritische Druck und Tk die kritische Temperatur ist.
Die sinnvolle Anwendbarkeit dieser Gleichung ist für Zustände näherungsweise von niedrigen bis hohen Temperaturen gegeben, nicht aber für nahkritische Verhältnisse (s. oben).
Oftmals liegen Dampfdrücke eines Stoffes als Meßwerte für verschiedene Temperaturen vor, so daß die Abhängigkeit des Dampfdruckes von der Temperatur für sehr viele Stoffe bekannt ist oder mit Näherungen bestimmt werden kann. Für technisch wichtige Stoffe ist so der Dampfdruckverlauf oft bekannt,so daß das Volumen des trocken gesättigten Dampfes in all diesen Fällen mit (II) als Näherung berechnet werden kann.
In Auswertung der zu kritischen Phänomenen durchgeführten Untersuchungen ergab sich weiterhin die folgende Gleichung:
. (III)
Dabei ist β ein kritischer Exponent, der hier universell mit β= 1/3 vorausgesetzt ist (s. oben). Kv ist die sogen. Dichtesprungkonstante.
Die obige Gleichung (III), die dem Dichtesprung zwischen Flüssigkeit und Dampf entspricht, ermöglicht die Berechnung des Sättigungsvolumens v‘ der Flüssigkeit bei gegebener Temperatur, wenn v“ bereits mit (II) berechnet werden konnte. Die auf diese Art und Weise berechneten Flüssigkeitsvolumina bzw. Dichten stimmen für die verschiedensten Stoffe erstaunlich gut mit Meßwerten überein.
Für Daten kurz unter der kritischen Temperatur bestehen wegen der am kritischen Punkt sich beträchtlich vergrößernden molekularen Fluktuationen veränderte Bedingungen, die zu anderen sich aus (III) ableitbaren Berechnungsgleichungen führen. Damit sind dann sogar die Sättigungsvolumina v‘ und v“ und auch die Dampfdrücke ps für Temperaturen kurz unter der kritischen Temperatur als Näherungen berechenbar, was mit herkömmlichen thermischen Zustandsgleichungen in Nähe des kritischen Punktes nicht gelingen kann.
Eine in den Variablen p, v, T bestehende thermische Zustandsgleichung werde mit ZG(p,v.T)=0 bezeichnet. Die Zustandsgleichung ZG kann hierbei die van der Waals- Gleichung, die Virialgleichung oder auch eine beliebig andere die Variablen p,v,T enthaltende sinnvolle Zustandsgleichung sein.
Wenn nun für eine bestimmte Temperatur der Dampfdruck gegeben ist, muß
gelten. Außerdem muß das Maxwell- Kriterium
(IV)
erfüllt sein.
Es bestehen damit die folgenden zwei Gleichungen als ein Gleichungssystem:
. (V)
Da das Gleichungssystem (V) zwei Gleichungen enthält, können zwei Unbekannte bestimmt werden. Bei vorgegebener Temperatur, bekanntem Dampfdruck und den mit den Gleichungen (II) und (III) bekannten Volumina v‘ und v“ können das die in der Zustandsgleichung ZG(p, v, T) =0 enthaltenen unbekannten Parameter der jeweilig vorausgesetzten Zustandsgleichung sein (z.B. der van der Waals-Gleichung, der Redlich- Kwong- Gleichung, der Peng- Robinson- Gleichung usw. ).
Es zeigt sich, daß man auf diese Art und Weise tatsächlich sinnvolle Ergebnisse erhält. Sowohl für Zustandsgleichungen des van der Waals- Typs als auch für andere können so die Parameter dieser Gleichungen mit (V) berechnet werden. Auf solch einer Grundlage ist dann die Bestimmung von Realgasfaktoren von Flüssigkeiten bei vorgegebener Temperatur vom Dampfdruck bis hin zu hohen Drücken von z. B. 100MPa bei guter Übereinstimmung mit Meßwerten möglich. Die Fehler der Rechnung sind selbst bis zu hohen Drücken gering. Bei Voraussetzung herkömmlicher Zustandsgleichungen sind die Fehler viel größer.
Die Volumina bzw. Dichten realer Gase können für eine bestimmte Temperatur und einen vorgegebenen Druck ohne Benutzung einer der bisher benutzten Zustandsgleichungen mit (I) berechnet werden- die sonst in der Technischen Thermodynamik und Verfahrenstechnik zur Berechnung realer Zustandswerte erforderlichen empirischen Größen- wie z.B. azentrische Faktoren ω sind sind gar nicht mehr erforderlich.
Beispiele für Ergebnisse der Nachrechnungen einzelner technisch interessanter Stoffe sind die Artikel : Tritium, Ozon, Uranhexafluorid, Schwefeldioxid, Stickstoffmonooxid, Aceton, Dioxan, Acetonitril, flüssige Erdgas- und Erdölkomponenten. Für einige flüssige Metalle, für die noch keine herkömmlichen Berechnungsmöglichkeiten existieren, werden die kritischen Temperaturen und die Flüssigkeits- und Sattdampfvolumina eingeschätzt. Auch die Möglichkeit der Formulierung sehr genauer Temperaturfunktionen für das Volumen bzw. für die Dichte von Flüssigkeiten in einem Bereich von der Schmelztemperatur bis nahe unter der kritischen Temperatur wird erläutert.