Archive for the ‘Zustandsgleichung’ Category

Zur Genauigkeit der Berechnung von pvT- Daten in der kritischen Region

Montag, April 15th, 2013

Für technisch wichtige Stoffe existieren heute recht genaue Zustandsgleichungen, die die Variablen Druck p, Temperatur T und Volumen v bzw. die Dichte ρ sowohl im Flüssigkeits- als auch im Gaszustand miteinander verbinden. Da es für die in der verfahrenstechnisch – großtechnischen Praxis bestehenden Anforderungen auf eine hohe Genauigkeit ankommt, reichen Berechnungsgleichungen auf Modellvorstellungen der Theoretischen Physik (auf der Basis der van der Waals- Gleichung und ihren vielen sogen. halbempirischen Weiterentwicklungen, der Virialgleichung usw. bis hin zur sogen. molekularen Thermodynamik) nicht aus. Deshalb müssen immer noch Zustandsgleichungen mit ausgeprägt empirischen und stoffspezifischen Anteilen verwendet werden, um die erforderliche Genauigkeit zu ermöglichen. Der Aufwand ist hoch. Er setzt sehr genaue und umfangreiche pvT- Messungen des jeweiligen Stoffes voraus, um die erforderlichen Anpassungen der experimentell ermittelten Zustandsdaten an Parameter vorausgesetzter Zustandsgleichungen zu ermöglichen. Die Erfolge dieser Vorgehensweise mit weitgehend empirischen und „halbempirischen“  Zustandsgleichungen sind offensichtlich.

Selbst für den die menschliche Existenz begründenden Stoff „Wasser“ sind solch weitgehend empirische Zusammenhänge auf der Grundlage sehr genauer pvT- Messungen entwickelt worden (entsprechend der sogen. IAPWS formulation- „International Association for the Properties of Water and Steam“), keineswegs aber auf der alleinigen Grundlage eines nur physikalisch begründeten Modells. Auch für die wichtigen Stoffe der Erdöl- und Erdgasgewinnung und Verarbeitung- wie z.B. Methan, Ethan……bis Benzol, Toluol usw.- existieren Zustandsgleichungen dieser Art.

Meßwerte vieler Substanzen sind heute in Datenbanken dokumentiert, die einen schnellen Zugriff (allerdings oft gebührenpflichtig) über das Internet gestatten (s. z.B. die umfangreiche Stoffdatensammlung „dechema.de/detherm“). Die Bereitstellung von Stoffdaten geht unterdessen so weit, für eine Vielzahl technisch wichtiger Stoffe komplette pvT-Datensätze und auch kalorische Daten anzugeben (s. „nist webbook“), die nach Vorgabe von Druck und Temperatur entsprechend der jeweiligen Dichte bzw. des Volumens mit einer weitgehend an Meßwerte angepaßten Zustandsgleichung ermittelt wurden- und das sowohl für die flüssige Phase und auch für die Gasphase und überkritische Zustände. Die Fehler dabei sind durchaus gering und liegen oft nur im Prozentbereich oder sogar darunter. Sie sind so geeignet für verfahrenstechnische Auslegungen großtechnischer Prozesse mit solchen Stoffen.

Dies alles trifft zu nur für pvT- Zustände weiter entfernt von den kritischen Daten. Soll bei Vorgabe von Druck und Temperatur in einem nahkritischen Bereich die Dichte bzw. das Volumen eines Stoffes mit einer solchen Zustandsgleichung bestimmt werden (dokumentiert z.B. in „nist webbook“) ist das zwar möglich- die Fehler aber werden dann oft als „höher“  im Vergleich zu den Fehlern angegeben, die in Zuständen weiter entfernt von den kritischen Daten festgestellt sind. So heißt es dann z.B. bei nist webbook für Ammoniak: „The uncertainties of the equation of state are o.2% in density….., except in the critical region“.

Und so etwa lauten ähnliche Feststellungen für auch ander Stoffe:

– „Uncertainties will be higher near the critical point“- nist webbook für H2S

– „In the critical region the uncertainties  are higher for all properties, except vapor pressure“- nist webbook für SO2.

Die Liste von Stoffen mit der Aussage „except in the critical region“ zu den in der Literatur angegebenen Zustandsgleichungen kann fortgesetzt werden, z. B. mit solchen grundlegenden und strukturell einfachen Stoffen wie Pentan, Propylen, Methan u.a. So ist also die Feststellung gerechtfertigt, dass die Ungenauigkeiten bisheriger veröffentlichter Zustandsgleichungen speziell in der kritischen Region selbst nach den durchgeführten sehr genauen pvT-Messungen und Anpassungen immer noch recht hoch sind.  Der Aufwand ist hoch in Relation zum Ergebnis.

Die Hoffnung, dass sich mit den von der Theoretischen Physik festgestellten Gesetzmäßigkeiten kritischer Phänomene akzeptable Berechnungsgleichungen ohne empirische Anteile ergeben könnten, die zwar nicht der klassischen van der Waals- Thermodynamik und den daraus resultierenden Gleichungen bis hin zur sogen. molekularen Thermodynamik entsprechen, aber doch ausreichenden Genauigkeitsansprüchen genügen, hat sich seit Jahren nicht erfüllt.

Nun hat es sich aus theoretischen Erwägungen zur Physik kritischer Phänomene ergeben, einen anderen als bisherige Ansätze zur Auswertung dieser Phänomene zu verfolgen.

Das bisherige Theorie- Ergebnis ist, dass man bei Kenntnis nur der kritischen Daten eines Stoffes weitgehend zutreffende Näherungsaussagen zum pvT- Verlauf der kritischen Isotherme bzw. von nahkritischen Isothermen erhalten kann- ohne zusätzliche Meßwerte. Für Stoffe also, zu denen keine weiteren Messungen außer denen der kritischen Daten vorliegen, können dann zumindest Näherungen des Isothermen -Verlaufs in der kritischen Region abgeleitet werden. Da das für sehr, sehr viele Stoffe zutrifft, ist es also durchaus möglich, die Daten der kritischen Isotherme und auch pv-Daten etwas unterhalb und oberhalb der kritischen Temperatur als Näherung zu berechnen. Nähere Ausführungen zur Theorie und zu Beispielrechnungen sind im Artikel vom 1.7.12 in www.dr-tampe.de u.a. enthalten. 

Bisher war es nicht möglich, die Sättigungsvolumina der siedenden Flüssigkeit und des Sattdampfes für Temperaturen kurz unter der kritischen Temperatur vorauszuberechnen. Mit den neuen Theorie- Ergebnissen zu kritischen Phänomenen erweist sich das unterdessen als möglich. Die berechneten Volumina sind Näherungen, die durchaus weitgehend mit Meßwerten übereinstimmen (s. Artikel“ Die Berechnung von Daten für Zustände kurz unter der kritischen Temperatur“ in www.dr-tampe.de .)

Mitteilung zu Zustandsgleichungen für reale Gase und Flüssigkeiten- abgeleitet aus der Theorie kritischer Phänomene

Freitag, November 16th, 2012

Für reale Gase wurde mit Gesetzmäßigkeiten kritischer Phänomene die Funktion

image276                                                                                   (1)

formuliert. Dabei ist p der Druck/MPa, ps der Dampfdruck/MPa, T die absolute Temperatur/K, v das Volumen/cm³/mol, v“ das Sättigungsdampfvolumen cm³/mol und R die allgemeine Gaskonstante 8.314 J/mol K. Die Funktion (1) ergibt sich allein nur mit Kenntnissen über kritische Phänomene ohne Voraussetzung und Anwendung von physikalischen Theorien, die die Anwendung  der van der Waals-Thermodynamik und ihren empirischen Weiterentwicklungen, der physikalisch begründeten Virialgleichung und ihren Weiterentwicklungen oder gar der sogen.  molekularen Thermodynamik und damit auch deren Vorstellungen über den Molekülaufbau des jeweiligen Stoffes  und der molekularen  Wechselwirkungen voraussetzen.  Die Grundlage dieser Funktion ist nicht die bisherige Thermodynamik, sondern allein nur ein thermodynamisches Modell begründet mit kritischen Phänomenen.

Für Gase besteht neben der physikalisch begründeten van der Waals- Gleichung die ebenfalls physikalisch begründete Virial-Gleichung .  Grundlage der Virialgleichung ist die Taylor- Entwicklung des Realgasfaktors  Z=pv/RT  in eine Reihe für die Dichte 1/v→0.  Als Reihenentwicklung wird

Z=1+B/v+C/v²+……                                                                                                           (2)

erhalten. Die Koeffizienten B,C,….werden als 2., 3. usw. Virialkoeffizient bezeichnet. Sie sind nur temperaturabhängig.

Die Berechnung von Zustandsdaten realer Gase gelingt mit der Virialgleichung als Näherung, wenn zumindest der 2. und evtl. 3. Virialkoeffizient bekannt ist.  Man sagt, die Funktion Z= 1+B/v ist als Näherung ausreichend bis zu Gasdichten von  ca. 0.5 ρk, die Funktion Z= 1+B/v+C/v² bis zu Dichten von ca.  o.75 ρk (ρk- kritische Dichte).

Die der o.gen. Funktion (1)  entsprechenden Virialkoeffizienten können berechnet werden. Die Kenntnis des 2. Virialkoeffizienten z. B.  ist aus folgenden Gründen sinnvoll: Der 2. Virialkoeffizient eines Stoffes nämlich steht mit dem Wechselwirkungspotential der zwischenmolekularen Kräfte zweier Moleküle eines Stoffes in Verbindung. Wenn man den 2. Virialkoeffizienten kennt, muß es der Theoretischen Physik möglich sein, Aussagen zu der wichtigen Potentialfunktion  der zwischenmolekularen Kräfte eines Stoffes abzuleiten. Die Statistische Thermodynamik  formuliert für den 2. Virialkoeffizienten

image277 .                                                       (3)

Dabei ist NA die Avogadrosche Konstante, Epot ist das Potential der zwischenmolekularen Kräfte, k ist die Boltzmann- Konstante und r ist der radiale Abstand zweier Moleküle des jeweiligen Stoffes. Wenn also der Virialkoeffizient B(T) bekannt ist, können Aussagen zu dem molekulartheoretischen sehr grundlegenden Potentialverlauf  Epot(r) getroffen werden. Und wenn das möglich ist, ist letzlich auch eine Aussage zum Potentialverlauf  zwischenmolekularer Kräfte verschiedener Stoffe möglich, so daß damit dann Gemischeigenschaften erfaßt werden können.  Die hierzu erforderlichen weiteren Untersuchungen können hier allerdings nicht dargelegt werden.

Der zur näheren Bestimmung des Potentials zwischenmolekularer Kräfte  erforderliche 2. Virialkoeffizient, der sich entsprechend (1) und  (2)  ergibt, lautet

image278.                                                                                                                           (4)

Am Beispiel Wasser soll gezeigt werden, daß der nach (4) berechnete 2. Virialkoeffizient durchaus dem nach Meßwerten  entspricht.

image279

Mit Hilfe der o.gen. Taylor- Entwicklung ist ersichtlich, daß für über alle Grenzen wachsendes Volumen

image280                                                                                                         (5)

gilt (s. z.B. J. Gmehling, B. Kolbe: Thermodynamik, VCH, 1992). Damit besteht auf einer Isothermen  die Beziehung

image281

(6).

Das ist aus folgendem Grund interessant: Der Grenzwert auf der linken Gleichungsseite wird experimentell bestimmt, indem bei T=konstant bei vorgegebenem Druck für p gegen O das jeweils zugehörige Volumen gemessen wird. Dies sind dann alles Stoffdaten ohne Bezug zu den Sättigungsdaten v“ und ps. Und trotzdem besteht laut der obigen Gleichung ein Zusammenhang mit dem Sättigungsvolumen v“ und dem Dampfdruck ps! Eine Information  zu v“ und ps ist also in dem o.gen.  bei verschwindenden Druck experimentell bestimmbaren Grenzwert bereits enthalten.

So wie es möglich war,  für reale Gase die Zustandsfunktion (1) entsprechend Gesetzmäßigkeiten kritischer Phänomene abzuleiten, zeigt es sich, daß auch für Flüssigkeiten eine druckexplizite allgemeine  Zustandsfunktion ebenfalls nur auf der Grundlage kritischer Phänomene in der Form p = p(v,T)  als Näherung bestimmt werden kann.  Kenntnisse zum Molekülaufbau und zu Wechselwirkungen innerhalb der Moleküle und zwischen den Molekülen des Materials sind dabei erstaunlicherweise gar nicht erforderlich.  Allerdings sind die kritischen Daten pk, vk, Tk und das Flüssigkeitssättigungsvolumen v‘ als bekannte Parameter vorauszusetzen. Die Ableitung der gen. Zustandsfunktionen für reale Gase und für Flüssigkeiten durch Auswertung von Gesetzmäßigkeiten kritischer Phänomene soll mit einer entsprechenden Veröffentlichung 2013 gezeigt werden.

Zur Berechnung nahkritischer Stoffdaten von Flüssigkeiten und Gasen

Sonntag, Juli 1st, 2012

Aus der physikalischen Theorie kritischer Phänomene kann für reale Gase die Zustandsfunktion

image259                                                    (1)

für Zustände entfernt vom kritischen Punkt bzw. für kleine bis mäßige Drücke abgeleitet werden (p- Druck/ MPa, ps- Dampfdruck/ MPa, T- Temperatur / K, v- molares Volumen / cm³/mol, v“- molares Sattdampfvolumen / cm³/mol ). Die Funktion (1) ist als grobe Näherung anwendbar. Sie ist anwendbar auch für hohe Temperaturen, sogar bis über die kritische Temperatur hinaus. Ihre Anwendbarkeit für Zustände nahe des kritischen Punktes ( einige Kelvin unterhalb und oberhalb der kritischen Temperatur Tk und für Drücke in der Nähe des kritischen Druckes pk ) ist nicht zu erwarten, da hier besondere und andere Bedingungen gelten, die sich aus Gesetzmäßigkeiten kritischer Phänomene im Unterschied zur bisherigen van der Waals- Thermodynamik ergeben.

Auf der kritischen Isotherme können entsprechend der Gesetzmäßigkeiten kritischer Phänomene nahe des kritischen Druckes die Relationen

image260                                                          (2)

 

image261                                                         (3)

 

vorausgesetzt werden. Dabei ist Kp ein Proportionalitätsfaktor und δ der entsprechende kritische Exponent. (2) gilt für p ‹ pk , (3) gilt für p › pk.

Für p,v – Zustände nahe pk, vk ist (2), (3) zwingend mit einem in der Theorie kritischer Phänomene erklärten kritischen Exponenten zu rechnen. Der kritische Exponent δ ist resultierend aus Messungen in der Größenordnung von 4.0 bis 4.8 festgestellt worden (s. z. B. Nolting, W.: Statistische Physik, Springer Verlag 2004).  Es gibt Physiker, die kritische Exponenten im Sinne absoluter Naturkonstanten unabhängig vom Stoff interpretieren und andere, die eine Stoffabhängigkeit in Grenzen zugestehen. Setzt man die weitgehende Stoffunabhängigkeit voraus, verbleibt der Proportionalitätsfaktor Kp  als Unbekannte. Es besteht die Frage, wie ist der Proportionalitätsfaktor Kp zu bestimmen, um Zustände auf der kritischen Isotherme berechnen zu können?

Sinnvoll ist es, die Frage allgemeiner zu stellen. Nämlich: Wie können nahkritische Zustandsdaten mit ausreichender Genauigkeit nicht nur für Zustände auf der kritischen Isotherme, sondern auch für Temperaturen kurz unter- und oberhalb der kritischen Temperatur bestimmt werden?  Bisherige physikalisch begründete als auch die sogen. halbempirischen  Zustandsgleichungen u.a. reichen nicht aus. Auch die von der bisherigen Theoretischen Physik erklärten Ansätze, die die rechnerische Bestimmung des Proportionalitätsfaktors Kp ohne Meßwerte  kaum erlauben, reichen nicht aus. Für technisch wichtige Stoffe ist deshalb die Physikalische Chemie und Verfahrenstechnik auf empirische stoffspezifische Lösungen bei einem hohen meßtechnischen Aufwand angewiesen (vielparametrige empirische Zustandsgleichungen pro Stoff bei Voraussetzung hochgenauer Stoffwerte) ( s. z. B. die Stoffdaten für Erdgaskomponenten, für Kohlenstoffdioxid CO2, für Wasser usw. mit weitgehend empirischen Zustandsgleichungen von Wagner und Span, Universität Bochum, s. E.W. Lemmon u. R. Span: Multiparameter Equations of State for Pur Fluids and Mixtures. Chapter 12, in A.R.H. Goodwin, J.V. Sengers und C.Peters(Ed.): Applied Thermodynamics of Fluids. International Union of Pure and Applied Chemistry, Royal Society of Chemistry, Thomas Graham House,Cambridge, UK 2010)).

Bisherige Feststellungen und Schätzungen kritischer Exponenten für dreidimensionale physikalische Systeme mit einem Ordnungsparameter in der entsprechenden Universalitätsklasse wurden z. B. in Auswerung des Issing – Modells mit dem kritischen Exponenten β = 0.326 + – 0.002 und δ = 4.80+- 0.02 vorausgesetzt (s. z. B. J.V. Senger: Thermodynic Behavior of Fluids near the critical Points, Ann. Rev. Phys.Chem. 1986,37).

Vorliegende Ergebnisse zu Gesetzmäßigkeiten kritischer Phänomene bestätigen zwar die Existenz des kritischen Exponenten β in der Größenordnung von 1/3, nicht aber die Gültigkeit eines allgemeinen Exponenten δ etwa bei 4.8. Das in  der Theoretischen Physik gen. Werteintervall δ = 4.0 bis 4.8 trifft zu und ist nach den vorliegenden Untersuchungen durchaus noch zu klein. 

Die nachfolgenden Feststellungen weisen darauf hin, daß es möglich ist, einen physikalisch begründeten und empiriefreien Ansatz zur Nachrechnung nahkritischer Daten ohne zusätzlichen Meßaufwand zu finden.

Bestimmt man für die kritische Isotherme vergleichsweise für verschiedene Stoffe den Exponenten RTk/pk vk in (1), ist festzustellen: Es gibt Stoffe, deren Exponent RTk/pk vk  in (1) in dem für den kritischen Exponenten δ erklärten Bereich zwischen 4.0 bis 4.8 liegt. Für Wasser z. B. ergibt sich 4.36, für Ammoniak NH3  4.12. Für solche Stoffe ist die weitgehende Gültigkeit der Funktion (1) auch im nahkritischen Bereich zu erwarten. Die kritische Isotherme sollte in diesen Fällen entsprechend (1) mit

image262                            v‹ vk      (4)

image263                            v›vk       (5)

erfaßt werden können.

Ob das tatsächlich so ist, zeigt die Nachrechnung mit Daten gut vermessener Stoffe wie z. B. für Wasser.

Wasser: (Tk= 647.15 K, pk= 22.055 MPa, vk= 55.9503 cm³/mol)

Bei einer Temperatur 648.15 K (375 °C, also 1°C  über der kritischen Temperatur) und einem hypothetischen Dampfdruck von 22.286 MPa ergeben sich mit den o. gen. Funktionen (4), (5) im Vergleich mit aus Meßwerten berechneten Realgasfaktoren die folgenden Werte (außerdem sind die Werte angegeben, die sich mit einer der oft angewendeten Ingenieurgleichungen, der Soave- Redlich- Kwong- Gleichung berechnen lassen).

image264

(Meßwerte L. Haar, J.S. Gallagher, G.S. Kell: NBS/NRC Wasserdampftafeln, Springer 1988)

Ein weiteres für die kritische Isotherme vermessenes und veröffentlichtes Beispiel ist

Schwefelhexafluorid SF6: (Tk= 318.7232 K, pk= 3.755 MPa, vk= 196.576 cm³/mol)

Bei einer Temperatur genau auf der kritischen Isotherme ergeben sich mit den o.gen. Funktionen (4), (5) im Vergleich mit aus Meßwerten berechneten Realgasfaktoren die folgenden Werte:

image265

 Die gen. Beispiele u.a. zeigen die Anwendbarkeit der Funktionen (4), (5) für kritische Verhältnisse.

Für Stoffe allerdings, deren Exponent RTk/ pk vk nicht in das von der physikalischen Theorie erklärte Wertebereich von ca. 4.0 bis 4.8 für kritische Exponenten fällt, bestehen andere Bedingungen. Allerdings ergibt sich auch für solche Stoffe die Möglichkeit, nahkritische Stoffdaten rechnerisch zu bestimmen. Es ist dazu nur die Kenntnis der kritischen Daten und die vorausgesetzte Temperatur ohne weitere Meßwerte erforderlich.

Die so feststellbare Zustandsfunktion p = p(T,v) gestattet dann auch die Berechnung kalorischer Größen- wie auch der wichtigen Freien Enthalpie für nahkritische Zustände.

Die vorliegenden Theorie – Ergebnisse sollen veröffentlicht werden.

Die sich aus der Theorie kritischer Phänomene ergebenden Weiterentwicklungen ermöglichen es, allgemeine Aussagen zum pvT- Verhalten von Flüssigkeiten abzuleiten. Es ergibt sich eine Zustandsfunktion speziell für Flüssigkeitenvon niedrigen Temperaturen bis hin zu Temperaturen nahe der kritischen Temperatur. Damit kann bei vorgegebener Temperatur und vorgegebenem Druck das molare Volumen einer Flüssigkeit als Näherung selbst bis zu hohen Drücken von einigen 10 MPa und höher berechnet werden, wenn nur die kritischen und die Sättigungsdaten des jeweiligen Stoffes bekannt sind. Die Berechnung der Realgasfaktoren von Flüssigkeiten bis zu hohen Drücken ist somit bei guter Übereinstimmung mit Meßwerten möglich.

Für Flüssigkeitszustände bei Temperaturen niedriger bis mäßiger Dampfdrücke, d.h. weiter entfernt vom kritischen Punkt des jeweiligen Stoffes, ist mit den Mitteln der van der Waals- Thermodynamik die Zustandsfunktion

image266                                         (6)

ableitbar (b- Eigenvolumen der Moleküle des Stoffes/ cm³/mol, K-stoffspezifische Konstante mit der Dimension eines Druckes, die sich aus dem Dampfdruck ergibt) (s. Tampe,F.: Stoffwerte von Flüssigkeiten und Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene, 2009, ISBN 978-3-00-027253-0).Auch diese Funktion ermöglicht die Berechnung der Flüssigkeitsvolumina als Näherung für Drücke vom Dampfdruck bis weit darüber hinaus- z.B. für Wasser sogar bis 100 MPa. Mit dieser Funktion (6) und der aus der physikalischen Theorie kritischer Phänomene ableitbaren Zustandsfunktion für Flüssigkeiten nahe kritischer Werte ist die Berechnung von Flüssigkeitsdaten als Näherung  in ihrem gesamten Existenzbereich von niedrigen bis zu hohen Temperaturen, vom Dampfdruck bis zu hohen Drücken möglich.

Die in der Technischen Thermodynamik , Physikalischen Chemie und Verfahrenstechnik bestehenden Ansätze, Stoffeigenschaften mit den Mitteln der bisherigen van der Waals- Thermodynamik, der Statistischen Thermodynamik mit Mitteln von Potential- Ansätzen der Quantenmechanik bzw. der sogen. molekularen Modellierung zu bestimmen, erweisen sich oft als kompliziert und empiriebelastet. Als viel einfacher gestalten sich die aus Gesetzmäßigkeiten kritischer Phänomene ableitbaren Berechnungsgleichungen, die nicht einmal Anpassungsrechnungen an vorausgesetzte empirische Parameter verlangen.

Weitere Beispiele zu Rechenergebnissen im Vergleich zu Meßwerten können die Anwendbarkeit der gewonnenen Theorie – Ergebnisse, die Näherungen der entsprechenden Stoffwerte erlauben, verdeutlichen: s. Anlage.

Oftmals sind Meßwerte des nahkritischen Sättigungszustandes von Stoffen unbekannt. Die Berechnung solcher Daten für Flüssigkeits- und Dampfvolumina bzw. für Dampfdrücke  in der Nähe der kritischen Temperatur ist mit den gegenwärtig verfügbaren Berechnungsgleichungen (van der Waals- Gleichung, sogen. halbempirische Gleichungen nach Soave, Redlich, Kwong und Peng, Robinson u. a., Gleichungen der Statistischen Thermodynamik usw.) in vielen Fällen nicht möglich bzw. zu ungenau.

In Auswertung von Gesetzmäßigkeiten kritischer Phänomene ergibt sich nun die Möglichkeit, nahkritische Sättigungsvolumina bzw. die nahkritischen Dichten von Stoffen für Flüssigkeit und Dampf im Sättigungszustand in Abhängigkeit von der Temperatur zu berechnen. Die Berechnungsgleichungen dafür liegen vor. Die Ergebnisse sind Näherungen, die für den Flüssigkeitszustand sogar besser sind als für den Sattdampf (s. auch Artikel „Die Berechnung von Daten für Zustände kurz unter der kritischen Temperatur“ vom 22.2.2011 in www.dr-tampe.de  )

Auf Folgendes ist hinzuweisen: Wenn die Zustandsfunktion p= p(v,T) eines Stoffes sowohl sowohl für den Flüssigkeits- als auch für den Gaszustand bekannt ist, muß es möglich sein, kalorische Daten dieses Stoffes zu berechnen. Zur Berechnung z.B. der für technische Belange wichtigen Enthalpie gilt

image273.                                             (7)

Da

image274                                                                         (8)

die spezifische Wärmekapazität ist, die gemessen werden kann, und für

image275                                                  (9)

gilt, ist damit die Enthalpie eines Stoffes sowohl für den Flüssigkeitszustand als auch den Gaszustand berechenbar. Dies bedeutet weiter, daß so die Enthalpie eines Stoffes entlang der Dampfdruckkurve sowohl für die Flüssigkeit als auch für den Sattdampf als Näherung berechnet werden kann.

 

Anlage: Berechnungsbeispiele

image268

image269

 

image271

 

image272

Gedanken zur Universalitätshypothese kritischer Phänomene

Sonntag, Dezember 18th, 2011

Die in diesem Blog gen. und in einzelnen Artikeln beschriebenen neuen Möglichkeiten der Berechnung thermophysikalischer Daten von Flüssigkeiten und Gasen wurden durch eine Erweiterung der für nahkritische Zustände geltenden Gesetze kritischer Phänomene auf vom kritischen Punkt weit entfernte Zustände gewonnen.

Kritische Phänomene sind in einem engen Bereich der Temperatur oder des Drucks nahe der kritischen Daten untersucht und mit ihren kritischen Exponenten erklärt (s. Artikel vom 1.5.2009 „Eine Zustandsgleichung für reale Gase- abgeleitet aus der Theorie kritischer Phänomene“ und die Veröffentlichung „Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“ – ISBN 978-3-00-027253-0) . In der physikalischen Literatur ist die Wirkung kritischer Phänomene  auf Zustandsdaten von Stoffen begrenzt auf sehr nahkritische Verhältnisse- bis einige wenige Kelvin der Temperatur T  unter bzw. über der kritischen Temperatur Tk oder nur nahe am kritischen Druck pk. So z. B. heißt es: „Man spricht von kritischen Phänomenen. Ihre Universalität erklärt das heftige Interesse an diesen Phänomenen, obwohl sie sich nur im Bereich der kritischen Fluktuationen, also in einem nur sehr schmalen Temperaturbereich abspielen.“ (Nolting: Grundkurs Theoretische Physik 6, Statistische Physik, Springer 2004.)

Mit den vorliegenden Ergebnissen zumindest für die  kritischen Phänomene

– Dichtesprung ρ‘-ρ“ zwischen flüssiger und dampfförmiger Phase im Sättigungszustand

– Differenz vom Druck p zum kritischen Druck pk bzw. von der Dichte  ρ zur kritischen Dichte ρk auf der            kritischen Isotherme Tk

scheint das aber nicht so zu sein!

Denn es zeigt sich, daß die Proportionalitäten zwischen der Dichtedifferenz  ρ‘-ρ“ und (Tk-T)^β (für T<Tk) bzw. p-pk und sign(ρ-ρk)(⁄ρk-ρ⁄)^δ keineswegs nur in der unmittelbaren Nähe des kritischen Punktes gelten. Der Beleg dafür ist die Anwendbarkeit der Gleichungen

image256

und

image257,

die ja erst durch die Erweiterung der gen. beiden kritischen Phänomene auf weit von der kritischen Temperatur entfernte Temperaturen gewonnen werden konnten (ps- Dampfdruck, Kv- sogen. Dichtesprungfaktor), (s. o. gen.  Artikel vom 1.5.2009 ).  Die gen. beiden Gleichungen gelten trotz ihrer Ableitung aus Gesetzmäßigkeiten kritischer Phänomene keineswegs nur in der unmittelbaren Nähe des kritischen Punktes eines Stoffes. Sie können- wie in den verschiedenen Artikeln dieses Blogs aufgezeigt- durchaus zur näherungsweisen Berechnung von Stoffdaten benutzt werden. Die physikalische Theorie hierzu und die Ableitung dieser und weiterer Gleichungen ist in der o.gen. Veröffentlichung ausführlich dargelegt.

Entsprechend der Universalitätshypothese von Griffiths (R.B. Griffiths, Phys. Rev. Lett. 24, 1479 (1970)) haben die kritischen Exponenten für völlig verschiedene Stoffe fast die gleichen Werte (s. z. B. Nolting: „Grundkurs Theoretische Physik 6, Statistische Physik“, Springer Verlag 2004). Diese sehr erstaunliche Eigenschaft der verschiedensten Stoffe trifft zu- aber eben doch nur fast!

Theoretische Physiker erklären die Universalitätshypothese als unterdessen bewiesen entsprechend der Renormierungsgruppentheorie von K. Wilson.

Damit ist letztlich gesagt, daß die Universalitätshypothese selbst für Stoffe komplizierter chemischer Strucktur zutreffen muß- also  nicht nur für Stoffe einfacher Moleküle (wie N2,O2, Ar, He, H2 usw.), für die die meisten Messungen vorliegen, sondern auch für Stoffe größerer Molekülmasse mit z.B. C- Doppelbindungen, aromatischen Ringen, Heterocyclen und der ungeheuren Vielzahl weiterer anorganischen und organischen Verbindungen.

Die Frage,ob das angesichts der überwältigenden Vielfalt von Stoffen immer so entsprechend der Universalitätshypothese tatsächlich ist ( sie selbst formuliert die Einschränkung „fast“ ),  muß wohl erlaubt sein. Denn es ist zu bedenken, daß notwendige Untersuchungen und Messungen mit geringer Fehlertoleranz  in der Nähe des kritischen Punktes schwierig sind. Nur für relativ wenige Stoffe liegen z.B. p,v- Messungen auf der kritischen Isotherme vor.

Wenn die Universalitätshypothese von einer nur „fast“ zutreffenden Universalität der kritischen  Exponenten spricht, ist offensichtlich eine Variabilität dieser Exponenten im Rahmen der Vielfalt unterschiedlicher Stoffe zugelassen.  Es ist zu fragen, ob für diese Variabilität die Ungenauigkeit der schwierigen Messung verantwortlich ist oder ob der jeweilige kritische Exponent doch etwas vom Stoff abhängig ist. Auch Nachfragen dazu bei namhaften theoretischen Physikern konnten diese Frage nicht völlig klären. Teilweise wurde auf immer feste Werte der kritischen Exponenten verwiesen, teilweise wurde die Variabilität bei komplizierteren Molekülen und bei veränderten sogen. Universalitätsklassen benannt.

Keineswegs ist es so, daß die Variabilität kritischer Exponenten nur klein ist. Sehr deutlich zeigt sich das an dem kritischen Phänomen,welches den nahkritischen Zusammenhang von Druck und Dichte auf der kritischen Isotherme beschreibt. Für den dazu in der physikalischen Literatur benannten kritischen Exponenten δ wird immerhin ein beträchtlicher Wertebereich von 4 bis 4.8 genannt.  Eine weit geringere Streuung der festgestellten Werte des kritischen Exponenten besteht für das kritische Phänomen, das den nahkritischen Dichteverlauf  in Abhängigkeit von der Temperatur mit dem in der physikalischen Literatur bezeichneten Exponenten β beschreibt. Die Werte für β streuen  nur von 0.33 bis 0.37.  Obwohl der versuchstechnische  Nachweis und die Gültigkeit des mit dem kritischen Exponenten β verbundenen kritischen Phänomens der Proportionalität der Dichtedifferenz ρ‘-ρ“ mit der Temperaturdifferenz entsprechend (Tk-T)^β nur für Temperaturen in unmittelbarer Nähe der jeweiligen kritischen Temperatur erklärt ist, ergab sich der Nachweis dafür, daß die gen. Proportionalität auch für Zustände weit entfernt von der kritischen Temperatur gilt. Der Ausdruck dafür ist die bereits o. gen. Gleichung

image2561,

die die Grundlage wesentlicher Stoffdatenberechnungen der Artikel dieses Blogs und der Veröffentlichung „Stoffwerte von Flüssigkeiten und realen Gasen – berechnet mit Gesetzmäßigkeiten kritischer Phänomene“ (ISBN 978-3-00-027253-0) ist. Wirklich interessant ist, daß diese Gleichung , obwohl sie eigentlich nur für jeweils sehr nahkritische Temperaturen gelten dürfte, tatsächlich für die verschiedensten Stoffe auch komplizierten Molekülaufbaues sehr weit entfernt von der kritischen Temperatur anwendbar ist. Die Frage, warum das so ist , ist letzlich  von der heutigen Theoretischen Physik unbeantwortet.

Die  Theorie kritischer Phänomene erklärt die Eigenschaften bestimmter physikalischer Größen als eine Reihenentwicklung der reduzierten Temperatur (Tk-T)/Tk.  Auch für die Dichtedifferenz ρ‘-ρ“ besteht solch eine Reihenentwicklung. Damit ist es dann möglich, eine sehr genaue Gleichung zur Bestimmung der Siededichte eines Stoffes als Temperaturfunktion abzuleiten, wenn nur einige wenige Meßwerte dazu vorliegen (s. den Artikel vom 5.7.2010 in diesem Blog “ Kritische Exponenten als mögliche Grundlage sehr genauer Stoffwertberechnungen“). Beispielrechnungen bei hoher Übereinstimmung mit Meßwerten wurden mit dem kritischen Exponenten β = 1/3 durchgeführt.

Die o.gen. Zustandsfunktion

image2571

wurde mit einer Erweiterung des für den Druck und der Dichte auf der kritischen Isotherme geltenden kritischen Phänomens  des Exponenten δ = 4.4±0.4 abgeleitet. Voraussetzung dabei ist die Hypothese, daß das für die kritische Isotherme erklärte kritische Phänomen

image2581

(const- Konstante) auf Drücke weit entfernt vom kritischen Druck und auch auf Temperaturen entfernt von der kritischen Temperatur übertragen werden kann. Die mathematische Strucktur der sich mit dieser Hypothese ergebenden Gleichungen führt dann allerdings nicht zu dem Exponenten δ, sondern zu einem Exponenten RTk/pkvk  für die kritische Isotherme bzw. zu RT/psv“ für eine von Tk verschiedene Temperatur.

Interessant ist, daß dieser sich aus der Rechnung ergebende Exponent der  reziproke Wert des in der Technischen Thermodynamik verwendeten Realgasfaktors eines Gases im Sättigungszustand ist: ps v“/RT.  Auf der kritischen Isotherme liegen Werte des reziproken Realgasfaktors für alle möglichen Stoffe oft bei 3.5 bis 4.5- also durchaus in der Größenordnung des kritischen Exponenten δ= 4.4±0.4.  Wenn bedacht wird, daß der kritische Exponent um 4.4 nur auf der kritischen Isotherme in der unmittelbaren Nähe des kritischen Drucks gilt, ist der Unterschied zum reziproken Wert des Realgasfaktors evtl. durch die Erweiterung des kritischen Phänomens auf Drücke keineswegs nur in der Nähe des kritischen Drucks  erklärbar.  Die näherungsweise Gültigkeit der abgeleiteten o. gen.  Zustandsfunktion ist durch eine Vielzahl von Nachrechnungen bei Vergleichen mit Meßwerten nachgewiesen. Sie hat den Vorteil, unabhängig von empirischen Voraussetzungen zu sein- z. B. von dem  in der Technischen Thermodynamik für sogen. halbempirische Zustandsgleichungen notwendigen völlig empirischen azentrischen Faktor.

Die bisherigen Untersuchungen zur Erweiterbarkeit von Gesetzmäßigkeiten kritischer Phänomene auf Daten weiter entfernt von Daten des kritischen Punktes sind bisher nur auf die o.gen. kritischen Phänomene bezogen.  Ergebnisse zur Kompressibilität und vor allem zur der  Wärmekapazität eines Stoffes als Funktion der Temperatur liegen noch nicht vor; sie sind  in Arbeit, um festzustellen, ob auch dafür Gesetzmäßigkeiten kritischer Phänomene im beschriebenen Sinne modifiziert werden können.

Die Berechnung von Flüssigkeitsdaten

Mittwoch, November 2nd, 2011

Speziell für Flüssigkeiten kann physikalisch begründet die Zustandsgleichung

image249

abgeleitet werden. Dabei ist T die absolute Temperatur / K , p der Druck über der Flüssigkeit / MPa, ps der Dampfdruck der Flüssigkeit/ Mpa, v das molare Volumen/ cm³/mol, b das molekulare Eigenvolumen/ cm³/mol und K eine dimensionslose Konstante. Diese Gleichung gilt für Flüssigkeiten entsprechend Temperaturen niedriger Dampfdrücke bis zu Temperaturen höherer Dampfdrücke, nicht aber in der Nähe der kritischen Temperatur.

Das Moleküleigenvolumen b ist als die Summe der einzelnen Volumina, die die Moleküle des Stoffes durch ihre atomare Strucktur im Raum aufspannen, erklärt. Das Eigenvolumen erweist sich über weite Temperaturbereiche (von niedrigen bis zu hohen Temperaturen, nicht aber in der Nähe der kritischen Temperatur) als konstant. Es kann mit Stoffdaten, die für niedrige Dampfdrücke gelten, berechnet werden- z. B. mit den (p,v,T)- Daten des oft bekannten normalen Siedepunkts, ebenso ist auch die obige Größe K festgelegt.  Zu den Einzelheiten der Theorie s. “ Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“ (ISBN 978-3-00-027253-0).

Für etliche technisch wichtige Stoffe sind die sogen. Realgasfaktoren Z  = pv/RT sowohl für die Gas- als auch für die Flüssigphase  entlang einer Isotherme von niedrigen bis zu hohen Drücken erfaßt. Diese Daten sind aus Stoffdatenbanken  oder aus Stoffwertsammlungen (s. z. B. W. Blanke: „Thermophysikalische Stoffgrößen“, Springer Verlag) zu entnehmen. Es handelt sich um versuchstechnisch ermittelte Werte.  Die Nachrechnung dieser Werte mit den heute in physilalischer Chemie und Verfahrenstechnik bekannten Zustandsgleichungen führt oft zu Ergebnissen, die mit den Meßwerten nicht übereinstimmen. Vor allem bei Flüssigkeiten ist das so, da es für Flüssigkeiten bisher keine allgemein anwendbare und physikalisch begründete Zustandsgleichung gab. Die o.gen. Flüssigkeits- Zustandsgleichung ermöglicht es allerdings nun, Flüssigkeitsvolumina bei vorgegenem Druck und gegebener Temperatur bei weitgehender Übereinstimmung mit Meßwerten zu berechnen bzw. die Realgasfaktoren zu bestimmen.

Die Tatsache, daß die bisher auch für Flüssigkeiten angewendeten Zustandsgleichungen von van der Waals und ihre Modifikationen zu oft ungenauen Ergebnissen führen, ist  als Theorie- Tatsache durchaus bekannt, da es eine physikalisch ausgearbeitete Theorie der Flüssigkeiten bisher nicht gibt. Interessant ist deshalb das Ergebnis einer Umfrage zu diesem Thema. Es wurde die Frage gestellt, ob es unterdessen Möglichkeiten zur Berechnung von Flüssigkeits- Realgasfaktoren bis zu hohen Drücken von 50 bis 100 MPa mit geringen Fehlern gegenüber Ergebnissen aus Meßwerten gibt. Es wurde gefragt: Ist  es überwiegend in der Praxis noch so, daß für Flüssigkeiten nur eigens durchgeführte pvT- Messungen zum Ziel führen? Fachlich fundierte Antworten bestätigten, daß es bisher noch keine physikalisch begründeten allgemein gültigen Ergebnisse aus einer Theorie der Flüssigkeiten gibt, die es ermöglichen würde, Realgasfaktoren für Flüssigkeiten vom Dampfdruck bis zu hohen Drücken auf einer Isotherme mit ausreichender Übereinstimmung mit Meßwerten zu berechnen.

Aber es gab auch ganz andere Antworten. Z. B. die, man solle dazu unter „google scholar“ nachsehen. Oder gar keine Stellungnahmen. Oder die: Es gibt Berechnungsmöglichkeiten.

Die o. gen. speziell für Flüssigkeiten bestehende Gleichung wurde mit  einer Vielzahl von Stoffbeispielen immer mit dem Ergebnis weitgehender Übereinstimmung mit Meßwerten überprüft.  Einige Beispiele dazu sind im Artikel “ Erdgas- flüssig “ vom 4.3. 2010 bereits genannt. Vor allem ist auf den Artikel „Die Zustandsdaten von Flüssigkeiten- berechnet von niedrigen bis hohen Drücken“ vom 6.2.2010 in diesem Zusammenhang hinzuweisen.

Die nachfolgenden Diagramme für Realgasfaktoren solch wichtiger Stoffe  wie  Wasser und Kohlenstoffdioxid bei verschiedenen Temperaturen können  die gute Übereinstimmung zwischen Rechnung mit obiger Gleichung und Meßwerten zeigen.

Wasser- flüssig:     

image252

image251

image250

image253

 

Kohlenstoffdioxid CO2- flüssig:

image254

image255

Die gute Übereinstimmung zwischen Rechnung und den Werten aus Versuchsdaten ist für die wichtigen Beispiele Wasser und Kohlenstoffdioxid ersichtlich. Ein weitgehend linearer Verlauf des Realgasfaktors Z in Abhängigkeit vom Druck auf einer Isotherme ist ersichtlich.

Für viele Stoffe, auch technisch wichtige Stoffe, ist die Druckabhängigkeit von Flüssigkeitsdaten noch gar nicht bekannt.  Nur für absolut wichtige Stoffe- wie z. B.  Wasser, Kohlenstoffdioxid, Methan, Ethylen, Propan, Butan, Stickstoff, Ammoniak, Sauerstoff- sind Realgasfaktoren druckabhängig bei verschiedenen Temperaturen als allgemein zugängige Daten (ohne evtl. vorhandene Angaben aus gebührenpflichtigen Datenbanken) auf der Grundlage von Meßwerten erfaßt.  Mit der o. gen. Flüssigkeitszustandsgleichung besteht nun die Möglichkeit, den Verlauf des Realgasfaktors einer Flüssigkeit zumindest als Näherung zu erfassen, wenn allein nur die pvT- Daten des normalen Siedepunkts des Stoffes vorliegen (oder auch nur das molare Volumen bei einer Temperatur niedrigen Dampfdrucks).

Die eingangs gen. Flüssigkeitszustandsgleichung wird gelöst, indem bei vorgegebenem Druck und vorgegebener Temperatur das jeweilige molare Volumen gesucht wird. Bei der überwiegenden Zahl der Lösungen liegt jeweils nur ein Volumenwert vor, so daß als Realgasfaktor immer nur ein Wert Z = pv/RT entsteht. Interessanterweise existieren aber auch p,T- Zustände von Flüssigkeiten, für die sich nach obiger Gleichung nicht nur eine Lösung für das molare Volumen ergibt, sondern sogar zwei! Das bedeutet, daß es in solchen Flüssigkeitszuständen zumindest mathematisch auch zwei Realgasfaktor- Werte gibt. 

An den Beispielen Wasser und Kohlenstoffdioxid soll das näher erläutert werden.

Für Wasser bei 300 °C und einem Druck von 10 MPa ergibt sich rechnerisch ein Realgasfaktor Z1 = 0.049, der mit dem entsprechenden Wert 0.051 auf der Grundlage von Meßwerten gut übereinstimmt. Außerdem ergibt sich aber auch noch ein zweiter Wert Z2 = 0.186. Bei einem Druck von 15 MPa ebenfalls bei 300 °C  ist Z1 = 0.073 und Z2 = 0.32 feststellbar.  Der Wert Z1 stimmt gut mit dem auf der Basis von Meßwerten sich ergebenden Realgasfaktor 0.078 überein. Nur im Bereich der Temperatur von 300 °C und Drücken von ca. 10 bis 15 MPa ist eine zweite Lösung Z2 überhaupt feststellbar. Alle anderen untersuchten Wasser- Zustände von 100 bis 350 °C und Drücken bis 100 MPa haben immer nur eine Z- Lösung, die mit den Werten nach Messungen gut übereinstimmen.

Die Frage ist: Was bedeutet die Lösung Z2, die nur in einem eng begrenzten Druck- und Temperaturbereich erklärt ist?

Auch für Kohlenstoffdioxid sind ähnlich wie bei Wasser in einem eng begrenzten p,T- Bereich zwei Lösungen der angewendeten Flüssigkeitszustandsgleichung feststellbar, so daß für bestimmte p,T- Zustände jeweils zwei Realgasfaktoren genannt werden müssen. Für Kohlenstoffdioxid z. B. bei -40 °C und einem Druck von 2 MPa ist Z1 = 0.04 und Z2 = 0.4 feststellbar. Der Wert Z1 stimmt mit dem mit Meßwerten ermittelten Wert o.o405 gut überein. Bei einer Temperatur von 0 °C und einem Druck von 4 MPa ergibt sich Z1 = 0.0845. Dies stimmt gut dem Wert 0.08305 überein,der sich nach Meßwerten ergibt. Für einen zweiten Wert gilt Z2 = 0.172. Ähnlich wie im Fall Wasser ist die zweite Lösung in einem nur engen Zustandsbereich erklärt (ca. von -40°C bis 0 °C und relativ niedrigen Drücken).

Auch hier ist die Frage zu stellen, was bedeutet die zweite Lösung Z2, die nur in einem engem Druck- und Temperaturbereich erklärt ist?

Es gibt nur zwei Erklärungsmöglichkeiten. Prinzipiell besteht die Möglichkeit, daß die Lösung Z2 ohne eine physikalische Bedeutung allein nur durch die mathematische Strucktur der o.gen. Flüssigkeitszustandsgleichung zu Stande kommt. Sicherlich muß man diesen Fall präferieren. Die andere Möglichkeit würde folgendes bedeuten: Für einen bestimmten vorgegebenen Druck und eine bestimmte  vorgegebene Temperatur einer Flüssigkeit können zwei molare Volumenwerte existieren, so daß in diesem Fall zwei Realgasfaktoren feststellbar sind.  Dies würde allerdings weiter bedeuten, daß in einem engen p,T- Zustandsbereich einer Flüssigkeit zwei Modifikationen des Stoffes mit zwei unterschiedlichen Dichten existieren können – ρ1 = M/v1, ρ2 = M/v2 (M- relative Molmasse g/mol). Sollte solch eine Möglichkeit tatsächlich bestehen? Es ist sehr fraglich.  Andererseits ist die evtl. Existenz  der beiden Flüssigkeitsmodifikationen in einem jeweils nur sehr engen p,T- Bereich erklärt, zu dem in Bezug auf eine zweite Modifikation wegen ihrer Unwahrscheinlichkeit  bisher gar keine Untersuchungen vorliegen können.

Was sollte getan werden?

Experimente z.B. mit Wasser bei ca. 300 °C und Drücken um 10 bis 15 MPa könnten darüber aufklären, ob es eine zweite Flüssigkeitsmodifikation  entsprechend der obigen Flüssigkeits- Zustandsgleichung überhaupt gibt. Der Autor dieses Artikels ist dazu nicht in der Lage. Gibt es fachlich Interessierte, die die Gültigkeit und Aussagekraft der gen. Flüssigkeits- Zustandsgleichung mit den dazu notwendigen Technik- Einrichtungen überprüfen könnten und wollen? Allerdings besteht das Risiko, nur bestätigt zu bekommen, daß es nur die eine Flüssigkeitsmodifikation gibt. Falls allerdings bestätigt werden sollte, daß es in einem engen p,T- Bereich eine zweite Flüssigkeitsmodifikation geben kann, ist der wissenschaftliche Gewinn erheblich.

Die Berechnung von Sättigungsdaten und der Realgasfaktoren von Flüssigkeiten und Gasen

Sonntag, Juni 7th, 2009

 

 Die Volumina v’, v’’ bzw. die Dichten r ’, r ’’ von Stoffen entsprechend ihres Dampfdruckes ps bei der Temperatur T sind sogen. Sättigungsdaten dieser Stoffe.

Die Kenntnis dieser Daten ist ausschlaggebend wichtig zur Beurteilung und Auslegung physikalisch- chemischer Abläufe und speziell in der Verfahrenstechnik.
Zur Berechnung des Dampfvolumens v’’ (cm3 /mol ) bei der Temperatur T (K) und gegebenem Dampfdruck ps (Mpa) steht als Näherung
 image118
zur Verfügung. Die Konstanten a, b sind die Parameter der klassischen van der Waals- Zustandsgleichung mit Tk als kritische Temperatur (K) und pk (Mpa) als kritischen Druck:
a = 27R2 Tk 2 /64pk , b = R Tk /8 pk . Genauere v“- Volumina sind mit einer weiteren Näherung zu berechnen (s. „Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“, ISBN 978-3-00-027253-0).
Die dem Sättigungsvolumen entsprechende Dichte r ’’ (g/ cm3 ) ist mit

 ρ“ = M/v“

zu berechnen.

Das Volumen der Flüssigkeit ist mit

image119 

gegeben.

Die sogen. Dichtesprungkonstante Kv (mol/cm3 K1/3 ) kann berechnet werden (s. „Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“- ISBN 978-3-00-027253-0). Der sogen. kritische Exponent b gilt mit dem Wert 1/3.

Die dem Flüssigkeitsvolumen v’ entsprechende Dichte ist mit

 ρ‘ = M/v‘

zu berechnen.

                                                                                                                                                                                                                                            

Das Volumen  realer  Gase ist mit

 image121

für die gegebene Temperatur T und dem vorgegebenen Druck p zu bestimmen.

Der den Zustand eines Stoffes charakterisierende Realgasfaktor Z = pv / RT kann also immer für Gase angegeben werden.

Da mit der oben gen. Gleichung für v’ auch die Flüssigkeitsvolumina in Abhängigkeit von der Temperatur und dem Druck in einer zu Gasen analogen Weise berechnet werden können, sind auch die für Flüssigkeiten definierten Realgasfaktoren selbst bis zu hohen Flüssigkeitsdrücken berechenbar.

 

Nachfolgend werden für bestimmte Stoffe auf diese Art und Weise berechnete Daten für die Volumina v’, v’’ und für Realgasfaktoren Z in Abhängigkeit von Druck und Temperatur zusammengestellt. Die Ergebnisse sind Näherungen. Die gen. Referenzwerte entsprechen Angaben aus der Literatur ( wie – VDI- Wärmeatlas, VDI- Verlag; – Landolt- Börnstein, Zahlenwerte und Funktionen, Springer- Verlag; – Blanke, W., Thermophysikalische Stoffgrößen, Springer- Verlag 1989, u.a.). Ein Vergleich mit Daten aus kommerziell geführten Datenbanken kann allerdings nicht erfolgen.

OZON O3

krit. Temperatur: 261.1 K,    krit. Druck: 5.53 MPa, normaler Siedepunkt: 161.9 K, Flüssigkeitsvolumen am normalen Siedepunkt: 35.5015 cm³/mol

 

Volumen- Sättigungsdaten von Ozon O3

Temperatur T      Flüssigkeit v‘                        Dampf v“ 

     K                        cm³/mol                                cm³/mol 

  –       berechnet      Referenzw.      berechnet     Referenzw.   

140      33.29                   33.40            72230             –

162      35.50                   35.52             12890            –

200    40.84                     –                    1714            –

230     47.57                    –                      516           –

Realgasfaktoren Z  für Ozon

Druck / MPa       Temperatur/K

                          77.15               90.25               140

0.1                   0.005                0.004                0.003

1.0                   0.045                0.04                   0.029

10                     0.45                  0.40                 0.29

20                     0.9                    0.79                0.57

100                   4.5                                            2.8

 

 Druck/MPa          Temperatur/K

                                  175            200            230

0.1                              0.98           0.99           0.99

1                                0.025         0.025         0.92

10                              0.252          0.24            0.24

20                              0.5              0.48          0.46

                          

Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene

Donnerstag, Mai 7th, 2009
Eine wichtige Grundlage zur Beschreibung des Verhaltens realer Gase ist bekanntlich die van der Waals- Gleichung. Sie ist auch der Ausgangspunkt für viele Weiterentwicklungen dieser Gleichung- aber dann immer auf weitgehend empirischer Basis.
Die klassische van der Waals- Gleichung beschreibt die Zustände realer Gase und sogar auch von Flüssigkeiten qualitativ richtig, quantitativ aber zur Auslegung technischer Abläufe keineswegs ausreichend. Die Ungenauigkeiten im Zweiphasengebiet und für Daten in der Nähe des kritischen Punktes können groß sein. Vor allem Flüssigkeitszustände werden sehr ungenau oder gar nicht erfaßt. Diese Feststellungen betreffen keineswegs nur die van der Waals-Gleichung, sondern auch die in der Technischen Thermodynamik entstandenen sogenannten halbempirischen Zustandsgleichungenvon Soave, Redlich, Kwong und Peng, Robinson  u.a., die heute weltweit zur Berechnung von Zustandsdaten angewendet werden.
 
 
 
 
 

 

So ist es ja bis heute nicht gelungen, die physikalische Theorie so zu entwickeln, dass die Volumina bzw. Dichten von Stoffen temperaturabhängig entlang der Dampfdruckkurve mit genügender Genauigkeit von der Schmelztemperatur bis zur kritischen Temperatur berechnet werden können. Oftmals besteht auch die Situation, dass mit den gegebenen Gleichungen zwar das Dampf- und Gasverhalten gut erfasst werden kann, nicht aber die Flüssigkeitswerte.
 
Der Übergang eines Stoffes von seiner flüssigen Form in den Dampfzustand bzw. vom Dampf in die Flüssigkeit- also der Verdampfungsvorgang bzw. die Kondensation – wird im allgemeinen von der physikalischen Theorie her und in der technischen Thermodynamik als beherrschbar und als relativ abgeschlossen angesehen. Das ist so in den meisten Anwendungsfällen. In der Nähe des kritischen Punktes eines Stoffes allerdings treten mit herkömmlichen theoretischen Ansätzen Schwierigkeiten bei der theoretischen Durchdringung des Verhaltens von Stoffen im Phasenübergang auf. Es ergaben sich neue und unerwartete Erkenntnisse, die mit dem Begriff der sogen. “kritischen Phänomene “ zusammengefasst werden.

 
 
 
 
 
 

 

Phasenübergänge waren ganz allgemein in den letzten Jahrzehnten ein interessanter Gegenstand intensiver physikalischer Forschung. Das Verhalten von Zustandsvariablen beim Phasenübergang nahe am kritischen Punkt eines Stoffes wurde speziell untersucht. Dabei wurden allgemeingültige Ergebnisse über den Verlauf von Zustandsgrößen in Abhängigkeit von der Temperatur erhalten. Die weitgehende Allgemeingültigkeit bestimmter Stoffeigenschaften in der Nähe der kritischen Temperatur wird physikalisch mit den Gesetzmäßigkeiten kritischer Phänomene beschrieben.
 
 
 
 
 
 

 

Die für Stoffeigenschaften maßgeblichen Wechselwirkungen zwischen den Molekülen und Atomen eines Stoffes haben normalerweise eine Reichweite von nur einigen Molekül- bzw. Atomdurchmessern. Im kritischen Zustand allerdings entsteht ein verblüffend universelles Verhalten physikalischer Größen wegen des Eintretens sogenannter kritischer Fluktuationen, die sich wie eine beträchtliche Vergrößerung der Reichweite von Teilchenwechselwirkungen auswirken. Dies hat zur Folge, dass Eigenschaften völlig unterschiedlicher Stoffe in der Umgebung der jeweiligen kritischen Temperatur sich nach analogen Gesetzmäßigkeiten verhalten.
Kritische Phänomene sind erklärt für
– den Dichtesprung zwischen flüssiger und dampfförmiger Phase
– die Differenzen vom Druck zum kritischen Druck bzw. von der Dichte zur kritischen Dichte auf der kritischen Isotherme
– Kompressibilitäten
– Wärmekapazitäten
– magnetische Zustände (Suszeptilitäten) bei verschwindendem Feld.

 

Die hier durchgeführten Untersuchungen beziehen sich auf den Dichtesprung und die kritische Isotherme. Im Ergebnis ist es damit möglich, durch Erweiterung des Geltungsbereichs kritischer Phänomene auf Temperaturen weit unterhalb der kritischen Temperatur wesentliche Schlußfolgerungen zum Zustandsverhalten realer Gase und Flüssigkeiten abzuleiten. Die Erweiterung des Geltungsbereichs kritischer Phänomene erfolgt als Hypothese, die durch die vorliegenden Ergebnisse durch Untersuchungen an konkreten Stoffdaten als berechtigt dargestellt ist.

 
 
 
 
 
 

 

Für reale Gase ergibt sich auf dieser Grundlage ein funktionaler Zusammenhang zwischen dem Druck p und dem molaren Volumen v auf einer Isotherme der Temperatur T entsprechend der Gleichungimage854  ,  (1)

wobei ps der Dampfdruck, v’’ das molare Sättigungsdampfvolumen und R die allgemeine Gaskonstante ist.
Diese Gleichung beschreibt selbst Zustände in der Nähe der kritischen Temperatur als Näherung.
 
 
 
 
 

 

 

Es zeigt sich weiter, dass es mit den hier auf der Grundlage der Theorie kritischer Phänomene gewonnenen Ergebnissen möglich ist, eine allgemeine Beziehung abzuleiten, die die Berechnung des molaren Volumens v’’ trocken gesättigten Dampfes bei bekanntem Dampfdruck ps als Näherung ermöglicht:
 
 
 
 
 
 

 

image863.     (2)

Dabei sind a und b die Parameter der klassischen van der Waals- Gleichung realer Gase mit                                      a = 27R2 Tk 2 /64 pk und b = R Tk /8 pk,  wobei pk der kritische Druck und Tk die kritische Temperatur ist. Genauere v“-Werte sind mit einem weiteren Näherungsschritt zu berechnen (s. „Stoffwerte von Flüssigkeiten und realen Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene“, ISBN 978-3-00-027253-0).
 
 
 
 
 
 

 

In Auswertung der zu kritischen Phänomenen durchgeführten Untersuchungen ergab sich weiterhin die folgende Gleichung:
 
 
 
 
 
 

 

image873.  (3)

Dabei ist b ein sogen. kritischer Exponent, der universell mit b = 1/3 gültig ist. Kv ist die sogen. Dichtesprungkonstante, die leicht mit einem bei niedriger Temperatur bekanntem v’- Wert bestimmt werden kann (wenn also 1/v’’ verschwindend klein ist).
Die obige Gleichung (3), die dem Dichtesprung zwischen Flüssigkeit und Dampf entspricht, ermöglicht die Berechnung des Sättigungsvolumens v’ der Flüssigkeit bei gegebener Temperatur, wenn v’’ bereits mit (2) berechnet werden konnte.
 
 
 
 
 

 

 

Eine in den Zustandsvariablen p, v, T bestehende thermische Zustandsgleichung werde mit ZG(p,v,T) = 0 bezeichnet. Die Zustandsgleichung ZG kann die van der Waals- Gleichung , die Virialgleichung oder auch eine andere die Variablen p, v, T enthaltende sinnvolle Gleichung sein.
 
 
 
 
 
 

 

Wenn nun für eine bestimmte Temperatur der Dampfdruck ps gegeben ist, muß
ZG(ps ,v’,T) = 0 und ZG(ps , v’’, T) = 0 gelten. Außerdem muß das Maxwell- Kriterium
 
 
 
 
 

 

 

image882   (4)

erfüllt sein. Zur Anwendung von (4) muss die Zustandsgleichung ZG in einer druckexplizieten Form                   p = p(v,T) vorliegen, um die erforderliche Integration über p(v,T) bei festem T ausführen zu können.
 
Damit bestehen die folgenden zwei Gleichungen :

 
 
 
 
 
 

 

image891,

image903   .  (5)

Da das Gleichungssystem (5) zwei Gleichungen enthält, können zwei Unbekannte bestimmt werden. Bei vorgegebener Temperatur, bekanntem Dampfdruck und den mit den Gleichungen (2) und (3) ebenfalls bekannten Volumina v‘, v‘‘ können das die in der Zustandsgleichung ZG(p,v,T) = 0 enthaltenen unbekannten Parameter der Zustandsgleichung sein. Am Beispiel der van der Waals- Gleichung kann das sehr einfach verdeutlicht werden.
 
 
 
 
 
 

 

Werden die Parameter a, b der klassischen van der Waals- Gleichung nicht als Konstanten, sondern als mit der Temperatur variabel betrachtet, können nun die Parameter a, b temperaturabhängig mit (5) bestimmt werden.
 
 
 
 
 
 

 

Es zeigt sich, dass man auf diese Art und Weise tatsächlich sinnvolle Ergebnisse erhält. Sowohl für Zustandsgleichungen des van der Waals- Typs als auch für andere Gleichungen können so die entsprechenden Parameter dieser Gleichungen temperaturabhängig mit (5) berechnet werden, so dass man damit dann mit der jeweiligen Zustandsgleichung die Volumina von Flüssigkeiten bei gegebenem Druck und vorgegebener Temperatur berechnen kann. Die Fehler sind für Flüssigkeiten selbst für hohe Drücke gering in der Größenordnung von nur einigen Prozent.
 
 
 
 
 
 

 

Die Volumina realer Gase können ohne Benutzung einer der bisher üblichen Zustandsgleichungen mit (1) berechnet werden. Allerdings nimmt die Genauigkeit bei zunehmender Annäherung an die kritischen Daten ab.

Auch die mit (2) berechenbaren Tauvolumina v“ werden mit zunehmender Nähe zu kritischen Daten ungenauer.  Es besteht aber die Möglichkeit, bedeutend genauere Tauvolumina- Werte zu berechnen, wenn die mit (2)  sich ergebenden v“- Werte als eine erste Näherung des o.gen. Gleichungssystems und als eine Grundlage für weitere Iterationen angesehen werden.

Zusammenfassend ist zu sagen, daß die Berechnung von erfreulich genauen v‘- und v“- Werten auf der Grundlage der angedeuteten erweiterten Theorie kritischer Phänomene so möglich wird, daß zur Berechnung dieser Daten nur der kritische Druck, die kritische Temperatur und ein Zustandspunkt bei niedrigem Dampfdruck ( mit der entsprechenden Temperatur und den zu dieser Temperatur gehörenden Volumina v‘ und v“)  bekannt sein muß – es kann sich dabei um den normalen Siedepunkt handeln.

Auch die Realgasfaktoren Z=pv/RT  von Stoffen für den Flüssigkeits- und Gaszustand lassen sich so recht einfach als Näherungen bestimmen.

Selbst die näherungsweise Bestimmung kritischer Daten eines Stoffes erweist sich auf der Grundlage der Erweiterung der Gültigkeit kritischer Phänomene als möglich.

Die Darstellung der Theorie, die Ableitung der Gleichungen verbunden mit Berechnungsbeispielen ist in  „Stoffwerte von Flüssigkeiten und realen Gasen -berechnet mit Gesetzmäßigkeiten kritischer Phänomene“   (2009, ISBN 978-3-00-027253-0, nicht im Buchhandel erhältlich) enthalten.

Eine Zustandsgleichung für reale Gase- abgeleitet aus der Theorie kritischer Phänomene

Freitag, Mai 1st, 2009

cover-bild-kindle

Dieser private Blog dokumentiert ausschließlich Theorie – Ergebnisse der Thermodynamik als Teil der Theoretischen Physik auch zur Fixierung des entsprechenden Urheberrechts. Es erfolgt keine Geschäftstätigkeit, wirtschaftliche Interessen werden nicht verfolgt. Personenbezogene Daten werden nicht erhoben.

In diesem Blog sind neue Theorie- Ergebnisse und ihre praktische Anwendung in der Technischen Thermodynamik dargestellt. Es handelt sich immer um Weiterentwicklungen der klassischen Thermodynamik auf der Grundlage von Zustandsgleichungen und der Anwendung von Gesetzmäßigkeiten kritischer Phänomene zur Berechnung von Stoffdaten speziell der kritischen Region und auch weit unter der kritischen Temperatur. Die Ergebnisse sind zusammengefasst in der Veröffentlichung

„Der erstaunliche Einfluss kritischer Phänomene auf das Zustandsverhalten reiner Stoffe“, ein Forschungsbericht,2019, ISBN 978-3-00-062342-4.

Die Cover- Rückseite dieser Veröffentlichung teilt mit:

scannen00011

Damit bestehen nun Möglichkeiten der Berechnung thermophysikalischer Daten der kritischen Region (als Näherung) und auch weit unter der kritischen Temperatur mit Mitteln der physikalischen Theorie kritischer Phänomene.

Wichtige Artikel dieses Blogs zum Verständnis der Theorie- Grundlagen sind:

– „Die nun mögliche Berechnung von pvT- Daten reiner Stoffe in nahkritischen Zuständen“         – 13.1.2019

– „Die Feststellung weiterer und bisher nicht bekannter kritischer Exponenten und ihre Anwendung“        – 1.1.2019

– „Der erstaunliche Einfluss kritischer Exponenten auf das Verhalten von Flüssigkeiten und Gasen und ihren Sättigungsdaten“       – 3.5.2018

– „Die Soave- Redlich- Keong- Zustandsgleichung völlig neu angewendet für reale Gase, für Flüssigkeiten und zur Berechnung der kritischen Temperatur“       -13.10.2017

– „Die allgemeine Dampfdruckgleichung“           -28.7.2016

An Beispielen wird für etliche Stoffe gezeigt, dass der Dampfdruckverlauf als Temperaturfunktion und die Volumen- bzw. Dichtesättigungswerte in Abhängigkeit von der Temperatur berechnet werden können, wenn nur wenige Messwerte bekannt sind (kritische Daten und die des normalen Siedepunkts). Das z. B. gelingt sogar auch für Metalle und ihre hochsiedenden Verbindungen. Speziell für Metalle u. a.  Stoffe wird gezeigt, dass sich die kritische Temperatur, die Dampfdruckfunktion und auch die Sättigungsdaten als Näherungen berechnen lassen, wenn allein nur die pvT- Werte des normalen Siedepunkts bekannt sind.

______________________________________________________________________________________________________________________________________________________________________________


Statt einer der üblichen Zustandsgleichungen für reale Gase kann die folgende einfache Gleichung für den funktionalen Zusammenhang von Druck p/ MPa des Gases, seiner Temperatur T / K und dem spezifischen Volumen v /cm^3/mol angewendet werden:

image851 .                                                                    (1)

Dabei ist p.s der Dampfdruck/ MPa und v“ das Sättigungsdampfvolumen / cm^3/mol.  R ist die allgemeine Gaskonstante 8.314 J/mol K.

Die obige Gleichung wurde durch eine Erweiterung der physikalischen Theorie kritischer Phänomene auch auf  Zustände weit unterhalb der kritischen Temperatur als eine einfache Näherung abgeleitet.

Zwischen dem  Volumen v“ des gesättigten Dampfes, der Temperatur T und dem Dampfdruck p.s besteht die folgende Näherungsbeziehung :

image86.                                                                                      (2)

Die Parameter a, b sind dabei die Konstanten der klassischen van der Waals- Gleichung

image92.                                                      (3)

Damit ist es immer möglich,  bei bekanntem Dampfdruck und bekannten kritischen Daten p.k- kritischer Druck/MPa und T.k-kritische Temperatur/ K das Sättigungsdampfvolumen näherungsweise  zu berechnen.

Außerdem ist es so auch immer möglich, bei bekanntem Dampfdruck durch Anwendung von Gleichung (1) Zustandsdaten eines realen Gases zu berechnen!

Die komplette Theorie hierzu- auch ein Zusammenhang mit der Theorie der Flüssigkeiten-  ergibt sich aus einer Ergänzung der klassischen Thermodynamik durch Schlußfolgerungen aus der physikalischen Theorie kritischer Phänomene und mit einem neuen molekular- theoretischen Ansatz zur Festlegung des Eigenvolumens von Molekülen.  Die sich dadurch ergebenden völlig neuen Möglichkeiten der Berechnung

– von p,v,T- Daten realer Gase und Flüssigkeiten ohne Anwendung bisheriger Zustandsgleichungen

-von Sättigungsdaten für Dampf und Flüssigkeit von reinen Stoffen als Temperaturfunktion bis hin zur kritischen   Temperatur

– des Dampfdrucks von reinen Stoffen als Temperaturfunktion (ohne Benutzung der sonst üblichen stoffabhängigen Parameter)

– der Verdampfungsenthalpie reiner Stoffe als Temperaturfunktion bis nahe an die kritische Temperatur

– von Freien Enthalpien reiner Stoffe

– sehr genauer Siedevolumina von Flüssigkeiten in Abhängigkeit von der Temperatur

sind in den einzelnen Artikeln dieses Blogs beschrieben.

Notwendige Erläuterung und Zusammenfassung zum Verständnis der wichtigsten Ergebnisse, die   dargestellt werden:

Die für Stoffeigenschaften maßgeblichen Wechselwirkungen zwischen den Molekülen und Atomen eines Stoffes haben normalerweise eine Reichweite von nur einigen Molekül- bzw. Atomdurchmessern. Im kritischen Zustand und in seiner Nähe entsteht allerdings ein universelles Verhalten physikalischer Größen wegen des Eintretens sogen. „kritischer Fluktuationen“, die sich wie eine beträchtliche Vergrößerung der Teilchenwechselwirkungen auswirken. Dies hat zur Folge, daß Eigenschaften völlig unterschiedlicher Stoffe sich im nahkritischen Zustand nach analog gleichen Gesetzmäßigkeiten verhalten, so als ob individuelle Stoffeigenschaften verschwinden.

Kritische Phänomene  sind z. B. erklärt für

– den Dichtesprung zwischen flüssiger und dampfförmiger Phase

– die Differenz vom Druck zum kritischen Druck bzw. von der Dichte zur kritischen Dichte  auf der kritischen Isotherme

– Kompressibilitäten

– Wärmekapazitäten

– magnetische Zustände ( Suszeptibilitäten) bei verschwindendem Feld.

Die Aussagen der klassischen Theorien entsprechend der van der Waals- Gleichung und der darauf aufbauenden empirischen Gleichungen treffen für nahkritische Zustände realer Gase und Flüssigkeiten nicht mehr zu. Für nahkritische Zustände gelten  Gesetzmäßigkeiten kritischer Phänomene!

Zum besseren Verständnis der Situation ist folgendes zu erklären:  Die theoretische Grundlage zur Beschreibung des Verhaltens realer Gase ist bekanntlich mit der van der Waals- Gleichung und mit der der statistischen Thermodynamik entsprechenden Virialgleichung gegeben. Das ist auch der Ausgangspunkt für viele Weiterentwicklungen- aber dann immer auf weitgehend empirischer Basis.

Die van der Waals- Gleichung beschreibt die Zustände realer Gase und sogar auch von Flüssigkeiten qualitativ richtig, quantitativ aber zur Auslegung technischer Abläufe keineswegs ausreichend.  Die Ungenauigkeiten im Zweiphasengebiet und für Daten in der Nähe des kritischen Punktes können groß sein.  Vor allem Flüssigkeitszustände werden gar nicht oder nur ungenau erfaßt. Diese Feststellungen betreffen keineswegs nur die van der Waals- Gleichung, sondern auch die in der Technischen Thermodynamik  entstandenen „halbempirischen Zustandsgleichungen“ von Soave, Redlich, Kwong und Peng, Robinson u.a., die heute weltweit zur Berechnung von Zustandsdaten angewendet werden.

Die heutigen thermischen Zustandsgleichungen als Grundlage der Berechnung von Stoffdaten für Flüssigkeiten und Gase beruhen alle letzlich auf der physikalisch begründeten van der Waals- Gleichung, der Virialgleichung, auf Ansätzen der statistischen Thermodynamik und vor allem immer wieder auf Parameter- Anpassungen empirischer Berechnungsgleichungen an Meßwerte. Der Aufwand ist hoch. Die empirische Vielfalt ist für Praktiker kaum noch überschaubar. Die unter Physikern manchmal ironisch geäußerte Kritik, daß die sogen. „halbempirischen Zustandsgleichungen“ der Technischen Thermodynamik und Verfahrenstechnik ein selbst empirisch erforderliches Niveau ja eigentlich nur zur Hälfte erfüllen, charakterisiert die Situation.

Die Theoretische Physik muß trotz der unbezweifelbaren verfahrenstechnischen Empirie – Erfolge  der letzten Jahrzehnte  Richtschnur im Labyrinth der Möglichkeiten bleiben. Die Suche nach physikalisch begründeten neuen Ansätzen mit geringeren empirischen Anteilen sollte gerade auf dem wichtigen Gebiet der Berechnung von Druck p, Volumen v, Temperatur T- Daten aktuell sein und bleiben.

Die für Praxis- Anwendungen erfolgreichen bisherigen Ansätze der Technischen Thermodynamik und Verfahrenstechnik beruhen letzlich immer auf sogen. “ mean- field“- Theorien.  Das einzelne Teilchen befindet sich dabei in einem mittleren Feld, das von allen anderen Teilchen verursacht wird. Fluktuationen des einzelnen Teilchens werden vernachlässigt.

In der Nähe des kritischen Punktes gilt diese Näherung nicht mehr, da die stattfindenden Fluktuationen nicht mehr vernachlässigt werden werden dürfen. Die Rechnungen mit den klassischen Theorien führen zu falschen Ergebnissen. Erst mit den nun von der Theoretischen Physik formulierten Gesetzmäßigkeiten kritischer Phänomene können richtige Ergebnisse gewonnen werden.

Eigentlich sollte es naheliegend sein, die Gesetzmäßigkeiten kritischer Phänomene in die Theorie- Ansätze der Technischen Thermodynamik, Physikalischen Chemie und Verfahrenstechnik einzubeziehen. Leider ist das in Bezug auf das Zustandsverhalten von Flüssigkeiten und realen Gasen nicht geschehen, obwohl das- wie sich zeigen wird- möglich ist.

Zum Verständnis der physikalischen Theorie und als kurze Zusammenfassung ist zu sagen: Die Theorie stellt fest, daß sich physikalische Größen f(x) in der Nähe des kritischen Punktes wie

image197

verhalten. Dabei ist x eine Variable, die am kritischen Punkt Null ist. Der Exponent λ wird kritischer Exponent genannt. Er ist mit

image198

definiert. Bei Existenz des Grenzwertes λ wird- f(x) verhält sich wie

image1971

gesagt. Die Definition der kritischen Exponenten umfaßt keineswegs nur die Proportionalität

image200,

sondern auch komplexere Zusammenhänge- wie

image2011 ,  (A, B,…….Konstanten, y>0).

Die physikalische Größe f(x) kann der Dichtesprung ρ‘-ρ“ zwischen der flüssigen und dampfförmigen Phase des Stoffes sein, wobei x die Differenz zwischen der jeweiligen Temperatur T und der kritischen Temperatur Tk ist.

Die physikalische Größe f(x) kann auch die Differenz vom Druck p zum kritischen Druck pk auf der kritischen Isotherme sein, wobei x Differenz zwischen der Dichte ρ und der kritischen Dichte ρk auf dieser Isotherme ist.

Für  diese beiden  kritischen Phänomene  werden für nahkritische Zustände im einfachsten Fall die Relationen

image202

vorausgesetzt. Dabei sind const1 und const2 stoffspezifische Konstanten; sgn ist die Vorzeichenfunktion, die je nach Vorzeichen des Arguments +, – 1 ergibt; die Exponenten β und δ sind kritische Exponenten.

Die Theoretische Physik formuliert eine sogen. Universalitätshypothese: „Die kritischen Exponenten sind fast universell, d. h. für alle thermodynamischen Systeme gleich“ (Nolting: Grundkurs theoretische Physik 6, Statistische Physik, Springer Verlag 2004), (R.B. Griffiths: Phys.Rev.Lett.24,1949(1970)). Diese Hypothese wird unterdessen als bewiesen betrachtet ( Renormierungsgruppentheorie von K. Wilson).

Entsprechend der Universalitätshypothese haben also die kritischen Exponenten β und δ der kritischen Phänomene- Dichtesprung  und Druck- bzw. Dichtedifferenz auf der kritischen Isotherme für völlig verschiedene Stoffe die jeweils gleichen Werte. Diese sehr erstaunliche Eigenschaft wird als Folge einer beträchtlichen Vergrößerung der Reichweite von Teilchenwechselwirkungen in der Nähe des kritischen Punktes erklärt.

Der kritische Exponent β wird in der Literatur mit Werten 1/3, 0.34,0.36,0.37 angegeben. Die Variation der Werte ist gering und evtl. mit den Schwierigkeiten der Messung zu erklären.

Der kritische Exponent δ wird mit 4.4 +,- 0.4 angegeben (Nolting, s.o.). Dieser Exponent ist mit einem weitgehend unscharfen Wert von 4.0 bis 4.8 benannt. Die Frage ist, ob für die etwas unterschiedlichen β- Werte und für das große δ- Intervall  die Ungenauigkeit der Messung die Ursache ist oder der jeweilige kritische Exponent doch etwas vom Stoff abhängig ist.  Selbst Nachfragen bei namhaften theoretischen Physikern konnten diese Frage nicht völlig klären. Teilweise wurde der Hinweis auf feste Werte der kritischen Exponenten entsprechend der Universalitätshypothese gegeben, teilweise wurde eine gewisse Variabilität kritischer Exponenten bei molekular komplizierter aufgebauten Substanzen (bei z. B. C- Doppelbindungen, aromatischen Ringen usw.) nicht ausgeschlossen.

Im Ergebnis der für den Dichtesprung  und die kritische Isotherme durchgeführten Untersuchungen ist es möglich, wesentliche Schlußfolgerungen zum Zustandsverhalten realer Gase und von  Flüssigkeiten in der Umgebung des kritischen Punktes und für Zustände weit ab von der kritischen Temperatur abzuleiten. Die Erweiterung des Gültigkeitsbereichs von Theorie- Ansätzen kritischer Phänomene nicht nur für Zustände in unmittelbarer Nähe des kritischen Punktes erfolgt als Hypothese unter Einbeziehung mean field- theoretischer Ansätze, die durch die vorliegenden Ergebnisse mit Untersuchungen an konkreten Stoffdaten als berechtigt dargestellt ist.

Für reale Gase niedriger bis hoher Drücke ergibt sich auf  dieser Basis ein funktionaler Zusammenhang zwischen dem Druck p und dem molaren Volumen v auf einer Isotherme der Temperatur T entsprechend der Gleichung

image203 ,                                                          (I)

wobei ps der Dampfdruck, v“ das molare Sättigungsdampfvolumen und R die allgemeine Gaskonstante ist.

Es zeigt sich weiter. daß es mit den hier auf der Grundlage der Theorie kritischer Phänomene gewonnenen Ergebnissen  möglich ist, eine allgemeine Beziehung abzuleiten, die die Berechnung des molaren Volumens v“ trocken gesättigten Dampfes  bei bekanntem Dampfdruck  als Näherung erlaubt:

image204.                                                                          (II)

Dabei sind a und b die Parameter der klassischen van der Waals- Gleichung realer Gase mit a= 27R²Tk²/64pk und b=RTk/8pk, wobei pk der kritische Druck und Tk die kritische Temperatur ist.

Die sinnvolle Anwendbarkeit dieser Gleichung ist für Zustände näherungsweise von niedrigen bis hohen Temperaturen gegeben, nicht aber für nahkritische Verhältnisse (s. oben).

Oftmals liegen  Dampfdrücke eines Stoffes als Meßwerte für verschiedene Temperaturen vor, so daß die Abhängigkeit des Dampfdruckes von der Temperatur für sehr viele Stoffe bekannt ist oder mit Näherungen bestimmt werden kann.  Für technisch wichtige Stoffe  ist so der Dampfdruckverlauf oft bekannt,so daß das Volumen des trocken gesättigten Dampfes in all diesen Fällen mit (II) als Näherung berechnet werden kann.

In Auswertung der zu kritischen Phänomenen durchgeführten Untersuchungen ergab sich weiterhin die folgende Gleichung:

image205.                                                                    (III)

Dabei ist β ein kritischer Exponent, der hier universell mit β= 1/3 vorausgesetzt ist (s. oben).   Kv ist die sogen. Dichtesprungkonstante.

Die obige Gleichung (III), die dem Dichtesprung zwischen Flüssigkeit und Dampf entspricht, ermöglicht die Berechnung des Sättigungsvolumens v‘ der Flüssigkeit bei gegebener Temperatur, wenn v“ bereits mit (II) berechnet werden konnte. Die auf diese Art und Weise berechneten Flüssigkeitsvolumina bzw. Dichten stimmen für die verschiedensten Stoffe erstaunlich gut mit Meßwerten überein.

Für Daten kurz unter der kritischen Temperatur bestehen wegen der am kritischen Punkt sich beträchtlich vergrößernden molekularen Fluktuationen veränderte Bedingungen, die zu anderen sich aus (III)  ableitbaren Berechnungsgleichungen führen. Damit sind dann sogar die Sättigungsvolumina v‘ und v“ und auch die Dampfdrücke ps für Temperaturen kurz unter der kritischen Temperatur als Näherungen berechenbar, was mit herkömmlichen  thermischen Zustandsgleichungen in Nähe des kritischen Punktes nicht gelingen kann.

Eine in den Variablen p, v, T bestehende thermische Zustandsgleichung werde mit ZG(p,v.T)=0 bezeichnet. Die Zustandsgleichung ZG kann hierbei die van der Waals- Gleichung, die Virialgleichung oder auch eine beliebig  andere die Variablen p,v,T enthaltende sinnvolle Zustandsgleichung sein.

Wenn nun für eine bestimmte Temperatur der Dampfdruck  gegeben ist, muß

image207

gelten. Außerdem muß das Maxwell- Kriterium

image208 (IV)

erfüllt sein.

Es bestehen damit die folgenden zwei Gleichungen als ein Gleichungssystem:

image209.                                                             (V)

Da das Gleichungssystem (V) zwei Gleichungen enthält, können zwei Unbekannte bestimmt werden.  Bei vorgegebener Temperatur, bekanntem Dampfdruck und den mit den Gleichungen (II) und (III) bekannten Volumina v‘ und v“ können das die in der Zustandsgleichung  ZG(p, v, T) =0 enthaltenen unbekannten Parameter der jeweilig vorausgesetzten Zustandsgleichung sein (z.B. der van der Waals-Gleichung, der Redlich- Kwong- Gleichung, der Peng- Robinson- Gleichung  usw. ).

Es zeigt sich, daß man auf diese Art und Weise tatsächlich sinnvolle Ergebnisse erhält. Sowohl für Zustandsgleichungen des van der Waals- Typs als auch für andere können so die Parameter dieser Gleichungen mit (V) berechnet werden.  Auf solch einer Grundlage ist dann die Bestimmung von Realgasfaktoren von Flüssigkeiten bei  vorgegebener Temperatur vom Dampfdruck bis hin zu hohen Drücken von z. B. 100MPa  bei guter Übereinstimmung mit Meßwerten möglich. Die Fehler der Rechnung sind selbst bis zu hohen Drücken gering. Bei Voraussetzung herkömmlicher Zustandsgleichungen sind die Fehler viel größer.

Die Volumina bzw. Dichten realer Gase können für eine bestimmte Temperatur und einen vorgegebenen Druck ohne Benutzung einer der bisher benutzten Zustandsgleichungen mit (I) berechnet werden- die sonst in der Technischen Thermodynamik und Verfahrenstechnik zur Berechnung realer Zustandswerte erforderlichen empirischen Größen- wie z.B.  azentrische Faktoren ω sind sind gar nicht mehr erforderlich.

Beispiele für Ergebnisse der Nachrechnungen  einzelner technisch interessanter Stoffe sind die Artikel : Tritium, Ozon, Uranhexafluorid, Schwefeldioxid, Stickstoffmonooxid, Aceton, Dioxan, Acetonitril, flüssige Erdgas- und Erdölkomponenten.   Für einige  flüssige Metalle, für die  noch keine herkömmlichen Berechnungsmöglichkeiten existieren, werden die kritischen Temperaturen und die Flüssigkeits- und Sattdampfvolumina eingeschätzt. Auch die Möglichkeit der Formulierung sehr genauer Temperaturfunktionen für das Volumen bzw. für die Dichte von Flüssigkeiten in einem  Bereich von der Schmelztemperatur bis nahe unter der kritischen Temperatur wird erläutert.